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Abstract— This paper presents a novel exploration frame-
work for underwater robots operating in cluttered environ-
ments, built upon simultaneous localization and mapping
(SLAM) with imaging sonar. The proposed system comprises
path generation, place recognition forecasting, belief propaga-
tion and utility evaluation using a virtual map, which estimates
the uncertainty associated with map cells throughout a robot’s
workspace. We evaluate the performance of this framework in
simulated experiments, showing that our algorithm maintains
a high coverage rate during exploration while also maintaining
low mapping and localization error. The real-world applicability
of our framework is also demonstrated on an underwater re-
motely operated vehicle (ROV) exploring a harbor environment.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has been
well studied in theory and applied successfully on real sens-
ing platforms for state estimation and map-building using
data collected passively [1]. However, it’s still a challenge for
an autonomous vehicle to actively map an unknown environ-
ment, properly managing the trade-off between exploration
speed and state estimation quality. Improving the capability
of autonomous exploration is beneficial for many robot
mapping tasks, especially in scenarios where teleoperation is
limited or infeasible due to constrained communication, e.g.,
in unknown subsea environments with underwater robots.

The autonomous exploration problem is generally solved
in three stages: path generation, utility evaluation and exe-
cution. First, we identify candidate waypoints or generate a
sequence of actions to follow, which is typically achieved by
enumerating frontiers or by employing sampling-based path
planning methods. The selected path is usually straightfor-
ward to execute using feedback controllers, thus leaving us
with a fundamental problem of designing a utility function
to measure path optimality. Essentially, it should capture the
exploration-exploitation dilemma, i.e., a balancing of visiting
unknown areas to reduce map uncertainty, and revisiting
known areas to seek better localization and map accuracy.

Predicting the impact of future actions on system uncer-
tainty remains an open problem [1], and this is particularly
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true for unobserved landmarks or other environmental fea-
tures that may provide useful relative measurements. Our
previous work on expectation-maximization (EM) explo-
ration [2] introduced the concept of a virtual map composed
of virtual landmarks acting as proxy for a real feature-based
map, on which we are able to predict the uncertainty resulting
from future sensing actions. Since every virtual landmark is
connected with robot poses that can observe it, the metrics
for exploration and localization are unified as the determinant
of the virtual landmarks’ error covariance matrix.

In this present paper, we extend the EM exploration
algorithms employed in past works [2], [3] to the real-world
application that originally inspired this work - the exploration
of cluttered underwater environments by a robot equipped
with a multibeam imaging sonar. In doing so, this paper
provides the following contributions:

• A more detailed exposition of processes for belief prop-
agation (over candidate robot actions, and over virtual
landmarks) that support the efficient implementation of
EM exploration in real-time, at large scales;

• A thorough evaluation of our framework’s performance
in simulated environments, examining the tradeoffs be-
tween a robot’s rate of exploration, localization and map
accuracy in comparison with other algorithms;

• The first instance, to our knowledge, of fully au-
tonomous exploration of a real-world, obstacle-filled
outdoor environment, in which an underwater robot
directly incorporates its SLAM process and predictions
based on that process into its decision-making.

II. RELATED WORK

The various factors considered in our mobile robot ex-
ploration problem, localization uncertainty, map uncertainty,
and coverage rate, have been considered individually and in
combination across a large body of prior work [4], [5], [6],
[7], [8], [9]. A body of relatively recent work has considered
autonomous exploration and active perception with underwa-
ter robots in particular. This work has emphasized mapping
with sonar, which can perceive obstacles at relatively long
ranges in all types of water. Vidal et al. [10] first employed
sonar-based occupancy mapping, in 2D, to explore cluttered
underwater environments with an autonomous underwater
vehicle (AUV), which repeatedly selects nearby viewpoints
at the map’s frontiers. Subsequent work by Palomeras et
al. [11] extended the approach to 3D sonar-based mapping
and exploration of cluttered underwater environments using



a next-best-view framework that weighs travel distance, fron-
tiers, and contour-following when selecting a new viewpoint.
In addition to view planning, active SLAM has been applied
to underwater robots, used to incorporate planned detours
into visual inspections that achieve loop closures [12], and
to deviate from three-dimensional sonar-based next-best-
view planning to achieve a loop closure when localization
uncertainty exceeds a designated threshold [13]. Of these
two works, the former navigates at a fixed standoff from
a ship hull’s surface, and the latter explores and maps an
indoor tank environment. In the sections that follow, we will
describe our proposed EM exploration framework and its
application to underwater mapping with sonar, demonstrating
that it achieves far lower localization and mapping errors
than frontier-based [14] and next-best-view [8] exploration
algorithms, and that the localization and mapping errors
realized are comparable to that of [13], while achieving a
superior rate of exploration.

III. EM EXPLORATION

We address the problem of autonomous exploration for
a range-sensing mobile robot in an initially unknown en-
vironment. Our robot performs SLAM and constructs an
occupancy grid map as it explores. We assume a bounded
2D workspace V ⊂ R2 where all discretized cells mi are
initialized as unknown P (mi = 1) = 0.5. A frontier is
defined as the boundary where free space meets unmapped
space. The exploration is considered complete if no frontier
can be detected. However, highly uncertain poses are likely
to result in complete, yet inaccurate occupancy grid maps,
limiting the usefulness of information gained by exploring
unknown space. Assuming the environment contains indi-
vidual landmarks L = {lk}, apart from discovering more
landmarks, minimizing the estimation error is equally crucial.

A. Simultaneous Localization and Mapping

We use a smoothing-based approach rather than a filtering-
based approach, adopting incremental smoothing and map-
ping [15] to repeatedly estimate the entire robot trajectory.
This affords us the flexibility to adopt either landmark-based
SLAM, or pose SLAM, scalably over long-duration missions.
Importantly, it also allows corrections to be made throughout
the mission to both the robot’s estimated pose history, and to
the map of the environment resulting from that pose history.

Let a mobile robot’s motion model be defined as

xi = fi(xi−1,ui) + wi, wi ∼ N (0, Qi), (1)

and let the measurement model be defined as

zij = gij(xi, lj) + vij , vij ∼ N (0, Rij), (2)

where we assume the data association between xi, lj is
known.

Given measurements Z = {zk}, we can obtain the best
estimate of the entire trajectory X = {xi} and observed
landmarks L = {lj},

X ∗,L∗|Z = argmin
X ,L

P (X ,L|Z). (3)

The maximum a posteriori (MAP) estimate can be used
by maximizing the joint probability, which afterwards leads
to a nonlinear least-squares problem. By constructing a
graph representation and linearizing nonlinear functions, the
marginal distributions and joint marginal distributions, both
of which are Gaussian, can be extracted using graphical
model-based inference algorithms [15].

B. EM-Exploration

In the formulation of the SLAM problem as a belief
net [16], the solution is obtained by maximizing the joint
probability distribution,

X ∗,L∗ = argmax
X ,L

logP (X ,L,Z), (4)

where X ,L,Z are robot poses, landmarks, and measure-
ments respectively. During exploration, we are confronted
with unknown landmarks that haven’t been observed yet.
Therefore, we introduce the concept of virtual landmarks
V as latent variables, which describe potential landmark
positions that would be observed when following the planned
path. Then the objective is to maximize the following
marginal model,

X ∗ = argmax
X

logP (X ,Z)

= argmax
X

log
∑
V
P (X ,Z,V).

(5)

The above equation involves unobserved variables,
which can be approached intuitively using an expectation-
maximization (EM) algorithm as follows,

E-step: q(V) = p(V|X old,Z) (6)
M-step: X new = arg max

X
Eq(V)[logP (X ,V,Z)]. (7)

In the E-step, latent virtual landmarks are computed based
on the current estimate of the trajectory and the history of
measurements. In the M-step, a new trajectory is selected
such that the expected value of joint probability, given the
virtual landmark distributions, is maximized. The iterative
algorithm alternates between the E-step and M-step, but each
iteration is accomplished by the execution of actions and the
collection of measurements.

The equation above poses a challenge for efficient solution
due to the exponential growth of potential virtual landmark
configurations with respect to the number of virtual land-
marks. Inspired by classification EM algorithms, an alterna-
tive solution would add a classification step (C-step) before
the M-step to provide the maximum posterior probability
estimate of the virtual landmark distributions,

C-step: V∗ = argmax
V

p(V|X old,Z) (8)

M-step: X new = arg max
X

logP (X ,V∗,Z). (9)

If we further assume measurements are assigned to maxi-
mize the likelihood

Z = argmax
Z

h(X ,V),



then the joint distribution can be expressed as a multivariate
Gaussian centered at the proposed poses and landmark
positions, and the covariance can be approximated by the
information matrix inverse,

P (X ,V,Z) ∼ N
([
X
V

]
,

[
ΣXX ΣXV
ΣVX ΣVV

])
. (10)

The solution of Eq. (9) is equivalent to evaluating the log-
determinant of the covariance matrix,

argmax
X

logP (X ,V∗,Z) = argmin
X

log det(Σ). (11)

This implies that the performance metric for our proposed
exploration is consistent with the D-optimality criterion
in active SLAM [17], except that the subjects considered
include unobserved landmarks.

C. Belief Propagation on Candidate Actions

Since we are more interested in the uncertainty of the
virtual landmarks and the most recent pose xT+N at step T
with planning horizon N , we can marginalize out irrelevant
poses in ΣXX , ending up with ΣxT+N

. Typically, there exist
thousands of virtual landmarks, thus approximation of ΣVV
is critical for real-time applications. Combined with pose
simplification, we can obtain that, for a positive definite
covariance matrix,

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σvk
), (12)

where ΣVk is the diagonal block involving the kth virtual
landmark in ΣVV . This approximation is reasonable consid-
ering an overestimate of information using the introduced
virtual landmarks. We will discuss the process for estimating
ΣxT+N

in this section and Σvk
in the next section.

The SLAM problem defined in Section III-A can be
approximated by performing linearization and solved by
iteration through the linear form given by

δ∗ = argmin
δ

1

2
‖Aδ − b‖2, (13)

where A represents the Jacobian matrix and the vector b
represents measurement residuals. The incremental update δ
in the above equation is obtained by solving the system,

A>Aδ = A>b. (14)

It can also be formulated as Λδ = η where Λ = A>A is
known as the information matrix. In general, the covariance
matrix may be obtained by inverting the information matrix

Σ = Λ−1 = (A>A)−1. (15)

As shown in [18], the recovery of block-diagonal entries
corresponding to pose covariances can be implemented effi-
ciently. As a result, we concern ourselves with the problem
of updating uncertainty upon the arrival new measurements
assuming that Σxi

are given.
Covariance recovery is performed in three steps. First, we

compute diagonal entries in the covariance matrix. Second,
we ignore loop closure measurements and propagate the

covariance using only odometry measurements. This open-
loop covariance recovery is given by

Σxi,k+t
= Σxi,k+t−1

F>k+t, (16)

where Fk+t = ∂fk+t

∂xk+t
is the Jacobian matrix of fk+t with

respect to pose xxi,k−1
. The equation is applied recursively

and the initial value Σxi,k
can be computed by

ΛΣx·,k = Ik, RΣx·,k = R>Ik, (17)

where Σx·,k represents the cross-covariance between past
poses and the current pose and Ik is a sparse block column
matrix with an identity block only at the position correspond-
ing to pose k. The solution of Equation (17) is obtained
by Cholesky decomposition on the right (the R is available
immediately after incremental update in iSAM2 [15]), whose
computational complexity, for sparse R with Nnz nonzero
elements, is O(Nnz).

Finally, we use the Woodbury formula to update the
covariance matrix [19],

Σ′ = Σ + ∆Σ,∆Σ = −ΣA>u (I +AuΣA>u )−1AuΣ, (18)

where Au is a Jacobian matrix with each block row
corresponding to one loop closure measurement. Using the
above formula results in a highly efficient update, as it avoids
the inversion of a large dense matrix (A>A+A>uAu)−1. In
total, our belief propagation process requires the recovery of
block columns for which the respective pose appears in the
measurements, and a matrix inversion of a relatively small
matrix with the number of block rows equal to the number
of loop closure measurements.

D. Belief Propagation on Virtual Landmarks

Let us assume the robot following a certain path is able
to take measurements from landmarks in the surrounding
environment. Let {xi ∈ SE(2)} be the robot poses that
observe the same landmark l ∈ R2. In the following
derivation we do not distinguish between virtual landmark v
and actual landmark l (the process will accommodate both).
The measurement zi can be obtained from the following
sensor model

zi = z̃i + vi = hi(xi, l) + vi, vi ∼ N (0,Ri). (19)

We further assume that the sensor model is invertible, i.e.,
that we are able to predict landmark positions given robot
poses and their corresponding measurements. Mathemati-
cally, the Jacobian matrix has full rank, rank(∂hi

∂l ) = 2. One
example of such a model is bearing-range measurements,
which are commonly produced by sonars and laser range-
finders. In the following, we will use the inverse sensor
model for convenience,

l = h−1i (xi, z̃i) = h−1i (xi, zi − vi), vi ∼ N (0,Ri). (20)

The Jacobian matrices of the inverse sensor model are
represented as H = ∂h−1

∂x ,G = ∂h−1

∂z̃ . Given the covariance
matrices of poses {Σi|Σi � 0}, we intend to provide a
consistent estimate of a landmark’s covariance without the
computation of {Σij |i 6= j}.
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Fig. 1: Covariance intersection across several robot poses is used to compute an upper bound (red ellipses) on the actual landmark
covariance (green ellipses). Raw range-bearing returns from the object represented by landmark l, matched with their nearest neighbors
across consecutive robot poses using iterative closest point (ICP), are indicated as blue dots.

Suppose we obtain two measurements of the same land-
mark at two distinct poses xi,xj , resulting in a joint distri-
bution [

li
lj

]
=

[
h−1(xi, zi)
h−1(xj , zj)

]
. (21)

cov
( [li

lj

] )
=

[
Σl
i Σl

ij

Σl>
ij Σl

j

]
=

[
Hi 0
0 Hj

] [
Σi Σij

Σ>ij Σj

] [
Hi 0
0 Hj

]>
+

[
Gi 0
0 Gj

] [
Ri 0
0 Rj

] [
Gi 0
0 Gj

]>
Let Pi1 = HiΣiH

>
i � 0,Pi2 = GiRiG

>
i � 0,Pij =

HiΣijH
>
j .

cov
( [li

lj

] )
=

[
Σl
i Σl

ij

Σl>
ij Σl

j

]
=

[
Pi1 + Pi2 Pij

P>ij Pj1 + Pj2

]
We obtain two covariance estimates independently from two

poses and we will use split covariance intersection (SCI)
[20] to compute an upper bound on the actual landmark
covariance as follows

Σ̂l,−1 = (
1

ω
Pi1+Pi2)−1+(

1

1− ω
Pj1+Pj2)−1, ω ∈ [0, 1],

(22)
where ω can be optimized via

ω∗ = argmin
ω∈(0,1)

det(Σ̂l). (23)

Readers are referred to [20] for analysis of SCI and proof
of the upper bound. But the core idea is that if we construct
an optimal linear, unbiased estimator l̂ = Kili + Kjlj(Ki +
Kj = I), then it can be proved that Σ̂l � E[(̂l− l)(̂l− l)>].
Therefore we are able to further approximate Eq. (12) by

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σ̂vk
). (24)

We demonstrate the process of incremental split covariance
intersection in Fig. 1. At each step, a landmark covariance
estimate derived from the measurement collected at a specific
pose is indicated as a dark blue ellipse. After the first step, we
are able to fuse landmark observations from different poses
via covariance intersection, using Equation (22), as shown by
red ellipses. It is evident that the resulting ellipse from SCI
(red) contains the true result obtained from SLAM (green).

E. Extensibility to Pose SLAM

From the above derivation, an upper bound on the un-
certainty of a real or virtual landmark may be computed
from multiple poses that observe it. However it is worth
investigating the meaning of this process in the context of
pose SLAM, where no landmarks are incorporated into our
optimization. To simplify the problem, we assume environ-
mental features are measured and the transformation between
poses with overlapping observations is derived using iterative
closest point (ICP) [21]. We visualize such a scenario using
hypothetical range-bearing observations of an object (which
may be alternately represented as a landmark) in the leftmost
plot in Figure 1. In this example, the observations are
normally distributed and centered at the actual landmark
location. We assume this set of range-bearing returns will
be matched with those from other poses using ICP. In ICP,
a point is associated to its nearest neighbor and the matched
feature is given by

l̃ = argmin
li

‖li − l‖2. (25)

It is subsequently trivial to show that

Σl � E[(̂l− l)(̂l− l)>] � E[(̃l− l)(̃l− l)>]. (26)

The distribution of l̃ is visualized at every step in Figure 1.
While we aim to select exploration actions that reduce the
(virtual) landmark covariances in landmark-based SLAM, we
essentially minimize the closeness of measurements in ICP-
based pose SLAM. Because association error is one major
cause of ICP error, tightly clustered target points greatly
contribute to registration performance.

F. Virtual Map

How can we predict unobserved landmarks without prior
knowledge of the characteristics of an environment? We can
approach this question by making a conservative assumption
that any location which hasn’t been mapped yet has a
virtual landmark. Additionally, the probability that a location
is potentially occupied with a landmark can be captured
using an occupancy grid map. Let P (mi ∈ M) denote the
occupancy of a discretized cell, then we define a virtual map
V consisting of virtual landmarks with probability

P (vi = 1) =

{
1, if P (mi = 1) ≥ 0.5

0, otherwise.
(27)



In its definition, existing landmarks have been incorporated
into the virtual map, which is essential because minimizing
the uncertainty of observed landmarks is also desired. An
example of an occupancy map used to maintain virtual
landmarks is provided in Figure 2, where it is used for belief
propagation in support of planning with an underwater robot.

Although we can use the same occupancy grid map from
path planning, which is typically high-resolution, to construct
the virtual map using Eq. (27), it has been demonstrated
in our earlier work [2] that a low-resolution virtual map
provides similar exploration performance but requires less
computation. Therefore, in our experiments, we downsample
the occupancy grid map from 0.2 m resolution to d = 2 m,
shown in Fig. 2. The update of the virtual map and estimation
of virtual landmark covariances are described in Alg. 1.

Algorithm 1 Virtual Landmark Covariance Estimate

Require: virtual map resolution d, trajectory X and mea-
surements Z , candidate path XT :T+N and future mea-
surements ZT :T+N

1: M← UpdateOccupancyMap(X ,Z)
2: V ← Downsample(M, d) . Eq. (27)
3: Σ′ ← UpateCovarianceDiagonal(X ,Z, XT :T+N , ZT :T+N )
. Eq. (16) – (18)

4: for vk ∈ {vi ∈ V | P (vi = 1) = 1} do
5: Σvk

← CovarianceIntersect(Σ′, XT :T+N ,vk) . Eq.
(19) – (23)

6: end for

G. Motion Planning

To carry out the M-step of our algorithm introduced in
Equation (9), given the distribution of virtual landmarks,
path candidates must be generated and evaluated using the
selected utility function. If we are to consider global paths
that will be followed over a long span of time, we must
take into account two types of actions, exploration and place-
revisiting [5]. Exploration actions normally have destinations
near frontier locations where mapped cells meet unknown
cells, and to reduce localization uncertainty, place-revisiting
actions travel back to locations the robot has visited, or where
it is able to observe a previously observed obstacle. The
prevalence of these locations requires us to examine a large
number of free grid cells to obtain a near-optimal solution.

Therefore, we define two sets of goal configurations
in our action space. A set of frontier goal configurations
Gfrontier is used for exploration, and a set of place-revisiting
goal configurations Grevisitation is used to correct the robot’s
localization error. Algorithm 2 is designed for generating
the frontiers, which are uniformly sampled on the boundary
between the unknown and explored regions of the workspace.
In Algorithm 3, the place-revisiting set of goal configurations
is generated by choosing the candidates which can observe
the largest number of occupied cells.

In Eq. (12), the log-determinant of the covariance matrix
is derived from the M-step as our uncertainty metric. Since
the estimated covariance has to be fused with a large initial

Algorithm 2 Frontier Goal Configurations

Require: Frontier cells F , clearance map c, number of
candidate goals Nf , minimum separation distance d

1: Gfrontier ← ∅
2: while |Gfrontier| < Nf do
3: f∗ ← argmaxfi c(fi)
4: Gfrontier ← Gfrontier ∪ {f∗}
5: F ← F \ {fi | |fi − f∗| ≤ d}
6: end while
7: return Candidate exploration goals Gfrontier

Algorithm 3 Place-revisiting Goal Configurations

Require: Occupied cells O, clearance map c, number of
candidate goals Nr, revisitation radius r, minimum sep-
aration distance d

1: Grevisitation ← ∅
2: M = {m1,...,k} ← ComputeKMeans(O, k)
3: while |Grevisitation| < Nr do
4: m∗ = (x∗, y∗)← argmaxmi

|Oi|
5: R∗ ← {(x∗ + r cos(θ), y∗ + r sin(θ))|θ ∈ [0, 2π)}
6: r∗ ← argmaxri∈R∗ c(ri)
7: d∗ ← mingi∈Grevisitation |r∗ − gi|
8: if d∗ ≥ d then
9: Grevisitation ← Grevisitation ∪ {r∗}

10: end if
11: M←M\ {m∗}
12: end while
13: return Candidate revisitation goals Grevisitation

covariance, the log-determinant, or D-optimality criterion, is
guaranteed to be monotonically non-increasing during the
exploration process, which is consistent with the conclusion
in [22]. In addition to uncertainty criteria, it is valuable to
incorporate a cost-to-go term to establish a trade-off between
traveling cost and uncertainty reduction [5]. Thus, our utility
function for motion planning is finalized as,

UEM(XT :T+N ) =− log det(Σ̃xT+N
)−

∑
k

log det(Σ̂vk
)

− αd(XT :T+N ), (28)

where α is a weight on path distance d(XT :T+N ). In our
experiments, we adopt a linearly decaying weight function
with respect to traveled distance, whose parameters are de-
termined experimentally and applied consistently throughout
our algorithm comparisons below.

IV. EXPERIMENTAL RESULTS

Here we present experimental results from (1) a simulation
of a sonar-equipped underwater robot exploring and mapping
two planar, previously unmapped environments, and (2)
the real autonomous exploration of a harbor environment
with a BlueROV2 underwater robot. One of the simulation
environments is populated with point landmarks, permitting
a solution that employs landmark nodes in the SLAM factor



(a) Current pose (b) Candidate trajectory 1 (c) Candidate trajectory 2

Fig. 2: Planning over virtual maps, with two candidate trajectories shown. Virtual landmarks are maintained within the cells of a low-
resolution occupancy map (the higher-resolution occupancy maps used for motion planning and collision avoidance are shown in our
video attachment). The error covariances of all occupied and unknown cells are shown as ellipses drawn inside each respective map cell,
along with anticipated loop closure constraints. The maps shown were produced using real sonar data gathered by our ROV (Fig. 6).
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(d) Map coverage

Fig. 3: Exploration performance mean values in the landmark environment of Fig. 4 (a) for 45 trials (five for each robot start location
depicted in Fig. 4), with 95 percent confidence intervals shown. Values along the x-axis denote the robot’s distance traveled.

(a) Landmark SLAM (b) Pose SLAM

Fig. 4: Simulated exploration environments for landmark and pose
SLAM. The exploration bounding box is denoted by a blue rectan-
gle, and exploration is initialized from the green triangles. The robot
may only travel within the bounding box, and only observations of
the area within the bounding box are used to evaluate map coverage.

graph. The other environment is populated with heteroge-
neous structures, to which pose SLAM is applied instead.

The simulation environments were designed to emulate
our subsequent real experiment, and are aimed at evaluating
our algorithms quantitatively over a larger number of trials.
The simulated sonar operates at 5 Hz and has a field of
view with range r = [0 m, 30 m] and horizontal aperture
θ = [−65°, 65°]. Since we assume a 2D environment, the
vertical aperture is ignored in the simulation. Zero-mean
Gaussian noise is added to range and bearing measurements:
σr = 0.2 m, σθ = 0.02 rad. We provide simulated odometry

measurements at 5 Hz, which can be obtained from Doppler
velocity log (DVL) and inertial measurement unit (IMU)
sensors in our real experiments. Additionally, we add zero-
mean Gaussian noise to the 2D transform: σx = σy =
0.08 m, σθ = 0.003 rad.

The two maps used for simulated experiments are shown in
Figure 4. In the landmark map (containing a randomly gener-
ated collection of landmarks that is kept constant throughout
all trials), the robot is deployed from nine different starting
positions. In the pose SLAM map (whose structures are de-
rived from our real-world experimental results), the robot is
deployed from one of six starting positions. The exploration
process is terminated when there are no frontiers remaining
in the map that can be feasibly reached by our planner.

A. Algorithm Comparison

In the comparisons to follow, four algorithms are consid-
ered, all of which employ different techniques to repeatedly
select one of the goal configurations generated by our motion
planner described in Sec. III-G. First, we examine frontier-
based exploration [14], which explores by repeatedly driving
to the nearest frontier goal configuration. Secondly, we
examine a next-best-view exploration framework that selects
the goal configuration anticipated to achieve the largest
information gain with respect to the robot’s occupancy map,
in accordance with the technique proposed in [8]. Thirdly,
we examine the active SLAM framework of [13]. When a
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(c) Map error
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Fig. 5: Exploration performance mean values in the simulated marina environment of Fig. 4 (b) for 60 trials (ten for each robot start
location depicted in Fig. 4), with 95 percent confidence intervals shown. Values along the x-axis denote the robot’s distance traveled.

robot’s pose uncertainty (per the D-optimality criterion [17])
exceeds a designated threshold, this framework selects the
place-revisiting goal configuration that maximizes a utility
function expressing a weighted tradeoff between uncertainty
reduction and information gain. At all other times, the
approach reverts to that of [8], purely seeking information
gain. In the results to follow, we will refer to this approach as
the heuristic approach, due to its use of a tuned threshold on
pose uncertainty to determine when place revisiting occurs.
These three algorithms are compared against our proposed
EM exploration algorithm. The heuristic and EM algorithms
have been parameterized to achieve the closest possible
equivalence in trajectory estimation error (the root mean
square error of the full pose history, recorded at each instant
in time during exploration), providing a baseline from which
to examine other performance characteristics that differ.

B. Simulated Exploration over Landmarks

In the landmark environment shown in Figure 4a, we
compared the nearest frontier (NF), next-best-view (NBV),
heuristic, and EM algorithms across 45 simulated trials
(five for each robot start location). In this environment, the
landmarks are assumed to be infinitesimally small, and not
to pose a collision hazard. The average performance of the
four exploration algorithms is shown in Figure 3. The NBV
method achieves superior coverage of the environment, but it
also yields the highest pose uncertainty, trajectory error, and
map error. The NF approach achieves poorer coverage than
NBV, but achieves lower pose uncertainty and map/trajectory
error during exploration. The heuristic approach covers the
environment the least efficiently, while it offers the lowest
pose uncertainty and map error during the exploration pro-
cess. Our proposed EM algorithm achieves map coverage
superior to the heuristic approach, with comparable but
slightly higher pose uncertainty and map error.

C. Simulated Exploration with Pose SLAM

As there is no ground truth information available in our
real-world experiments, we have instead created the map
of Fig. 4b using manually collected data from the harbor
environment used in those experiments. Specifically, the map
of Fig. 4b is represented by an experimentally derived point
cloud. During simulated exploration, feature points that fall
within the sensor field of view are sampled and Gaussian

Fig. 6: Our custom-instrumented BlueROV2 robot.

noise is added - these sensor observations are used to pop-
ulate an occupancy map. Ten trials of each algorithm were
run at each of six different start locations (denoted as green
triangles in Fig. 4b). Mapping and localization errors are
reported with respect to our experimentally-derived ground
truth point cloud map. The mapping error is computed as
follows: for every estimated feature point, we compute its
distance to the nearest ground truth point.

The average performance of each algorithm is shown
in Figure 5. As before, the NBV algorithm achieves the
most efficient exploration, but at the expense of high pose
uncertainty, map error, and trajectory error. The pose un-
certainty, trajectory error, and map error of the heuristic
and EM algorithms are similar in value, and significantly
lower than that of the NF and NBV algorithms. While the
heuristic and EM algorithms have similar pose uncertainty
and map/trajectory error, the heuristic approach falls behind
EM in terms of map coverage.

D. Exploration with a Real Underwater Robot

The hardware used to test this work is a modified
BlueROV2, pictured in Fig. 6. This platform accommodates
an Oculus M750d multi-beam imaging sonar, a Rowe SeaPi-
lot DVL, a VectorNav VN100 IMU, and a Bar30 pressure
sensor. Similar to our simulation, the sonar field of view is
r = [0 m, 30 m] and θ = [−65°, 65°], with a 20° vertical
aperture. Although the pitch angle of the sonar is adjustable,
in the experiments to follow, it is set to 0°. The sonar is
operated at 750 MHz with 512 beams, 4 mm range resolution



and 1° angular resolution. The ROV is operated at a fixed
depth of 1m throughout our experiments. Data is streamed
via a tether to a surface laptop and processed in real-time
on the laptop. The surface laptop is equipped with an Intel
i7-4710 quad-core CPU, NVIDIA Quadro K1100M GPU,
and 8GB of RAM. All components of the software stack are
handled by the surface laptop, including image processing,
the SLAM solution, belief propagation, motion planning, and
issuing control inputs to the vehicle.

Real world experiments were carried out in a marina at the
United States Merchant Marine Academy (USMMA). The
goal was to explore and map the portions of the environment
that lie within a bounding box of dimensions 130m × 60m,
similar to that depicted in Fig. 4b. Three runs were performed
for each of the four competing algorithms, and all twelve
trials can be viewed side-by-side in our video attachment.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented and evaluated the concept
of using virtual maps, comprised of uniformly discretized
virtual landmarks, to support the efficient autonomous ex-
ploration of unknown environments while managing state
estimation and map uncertainty. Our proposed EM explo-
ration algorithm, when used in conjunction with a sonar
keyframe-based pose SLAM architecture, equips an un-
derwater robot with the ability to autonomously explore
a cluttered underwater environment while maintaining an
accurate map, pose estimate, and trajectory estimate, in
addition to achieving a time-efficient coverage rate. The
advantages of the proposed framework are demonstrated in
simulation, and a qualitative proof of concept is presented
over several real-world underwater exploration experiments.
These experiments represent, to our knowledge, the first
instance of fully autonomous exploration of a real-world,
obstacle-filled outdoor environment in which an underwater
robot directly incorporates its SLAM process and predictions
based on that process into its decision-making. Future work
entails the expansion of our framework to support three-
dimensional sonar-based occupancy mapping.
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