
MINIMALISTIC AND LEARNING-ENABLED NAVIGATION ALGORITHMS

FOR UNMANNED GROUND VEHICLES

by

Tixiao Shan

A DISSERTATION

Submitted to the Faculty of the Stevens Institute of Technology
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Tixiao Shan, Candidate

ADVISORY COMMITTEE

Brendan Englot, Chairman Date

Sven Esche Date

Steven Hoffenson Date

Long Wang Date

STEVENS INSTITUTE OF TECHNOLOGY
Castle Point on Hudson

Hoboken, NJ 07030
2019

©2019, Tixiao Shan. All rights reserved.

iii

MINIMALISTIC AND LEARNING-ENABLED NAVIGATION ALGORITHMS

FOR UNMANNED GROUND VEHICLES

ABSTRACT

Limited by the on-board computational resources of most unmanned mobile

robots, autonomous navigation becomes a challenging task as it requires real-time

planning, robust localization, and accurate mapping simultaneously. In this disserta-

tion, we present several minimalistic and learning-enabled navigation algorithms that

can achieve real-time performance on the hardware of a lidar-equipped unmanned

ground vehicle (UGV). First, we introduce three sampling-based multi-objective path

planning algorithms that are designed for relevant tasks, such as planning under risk

and planning under uncertainty. These planning algorithms are suitable for both

single-query and multi-query planning problems. Second, we present a lightweight

and ground-optimized lidar odometry and mapping system (LeGO-LOAM) that pro-

vides real-time ego-estimation and is applicable in a wide range of indoor and outdoor

environments. The system is lightweight in that it is able to run in real-time on an

embedded system. It is also ground-optimized as it leverages the presence of the

ground plane for ego-estimation. Third, we propose two learning-aided algorithms,

Bayesian generalized kernel (BGK) terrain mapping, and lidar super-resolution, to

address the sparse data problem that is encountered during mapping. BGK terrain

mapping is a back-end approach that infers the traversability of gaps that exist in a

robot’s terrain map. Lidar super-resolution is a front-end approach, which uses deep

learning to enhance range sensor resolution directly.

The motivating application of this work has been real-time autonomous navi-

gation of GPS-denied ground robots in complex indoor-outdoor environments. Along

iv

with making optimal decisions for path planning, knowing the robot’s position dur-

ing operation and reflecting the surrounding world accurately in the map are also

essential. The presence of slopes, vegetation, curbs and moving obstacles pose a chal-

lenging navigation problem. Deploying the proposed algorithms on a ground robot,

we give results for autonomous navigation in a variety of unstructured environments

where our UGV achieves high-performance path planning, low-drift localization, and

accurate mapping.

Author: Tixiao Shan

Advisor: Brendan Englot

Date: August 16, 2019

Department: Mechanical Engineering

Degree: DOCTOR OF PHILOSOPHY

v

To my family.

vi

Acknowledgments

I would like to thank my advisor Dr. Brendan Englot, for all the support and

guidance during my time in Robust Field Autonomy Lab (RFAL). Dr. Englot is a

wonderful mentor, teacher, leader, and friend to me. I have had a fantastic time

working under his supervision. Dr. Englot and I would hold a one-on-one meeting

every week to discuss research-related problems. He always shows a great positive

attitude, which is not only encouraging but also inspiring. Dr. Englot also created

such a relaxing environment for us. I always felt so comfortable while working in the

lab. Besides that, Dr. Englot always tries his best to satisfy all our needs, such as

lab supplies and research equipment.

I want to thank Dr. Sven Esche, Dr. Steven Hoffenson, and Dr. Long Wang

for serving as my committee members. I also want to thank you for your brilliant

comments and suggestions, and for letting my defense be a memorable and enjoyable

moment.

I also would like to thank all my labmates of RFAL: Shi Bai, Fanfei Chen,

Kevin Doherty, John Martin, Jake McConnell, Sumukh Patil, Erik Pearson, Paul

Szenher and Jinkun Wang. Without their help and advice, many of my work would

be impossible. It’s a great pleasure working with them. I want to thank the visiting

scholars of our lab, Dong Cui and Dengwei Gao, for being good friends during their

stay. I want to thank Chenhui Zhao for being the most entertaining lunch buddy.

I want to thank Dr. Souran Manoochehri for the support of the application for

Fernando L. Fernandez Robotics and Automation Fellowship. I want to thank Dr.

Mishah Salman for all the advice for my research career and it has been a great

pleasure to be his teaching assistant. I want to thank Ton Duong and Jennifer Field

vii

for their help with my teaching assistantship duties. Last but not least, I want to

thank all the friends, teachers and staff I met at Stevens.

Finally, I want to thank my parents for their constant support pursuing my

doctoral degree. Especially, I want to thank Mr. Jeffrey Shore, for being the most

supportive companion. None of the above may happen without you.

viii

Table of Contents

Abstract iii

Dedication v

Acknowledgments vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Overview and Contributions 5

2 Background 9

2.1 Multi-Objective Motion Planning 9

2.1.1 Weighted Sum Method 10

2.1.2 Constraint-based Methods 11

2.1.3 Lexicographic Method 13

2.1.4 Applications 14

2.2 Lidar-based Localization 19

2.3 Traversability Mapping 22

2.4 Lidar Super-resolution 27

3 Efficient Multi-Objective Planning 29

3.1 Minimum-Risk Planning 29

ix

3.1.1 Problem Definition 30

3.1.2 Algorithm Description 32

3.1.3 Algorithm Analysis 35

3.1.4 Experiments 38

3.1.5 Conclusions 45

3.2 Min-Max Uncertainty Planning 46

3.2.1 Problem Definition 46

3.2.2 Algorithm Description 52

3.2.3 Algorithm Analysis 54

3.2.4 Experiments 60

3.2.5 Conclusions 64

3.3 Belief Roadmap Search 66

3.3.1 Problem Definition 66

3.3.2 The Belief Roadmap Search 68

3.3.3 Algorithm Analysis 71

3.3.4 Experiments 78

3.3.5 Conclusions 85

4 Lightweight Lidar Odometry 86

4.1 Introduction 86

4.2 LeGO-LOAM 87

4.2.1 Segmentation 89

4.2.2 Feature Extraction 91

4.2.3 Lidar Odometry 92

4.2.4 Lidar Mapping 94

4.3 Experiments 95

x

4.3.1 Small-Scale UGV Test 96

4.3.2 Large-Scale UGV Tests 99

4.3.3 Benchmarking Results 104

4.3.4 Loop Closure Test using KITTI Dataset 107

4.4 Conclusions 108

5 Learning-Enhanced Perception 110

5.1 BGK Inference for Terrain Traversability Mapping 110

5.1.1 Introduction 110

5.1.2 Technical Approach 110

5.1.3 Experiments 117

5.1.4 Conclusions 124

5.2 Lidar Super-resolution 125

5.2.1 Introduction 125

5.2.2 Technical Approach 126

5.2.3 Experiments 131

5.2.4 Conclusions 140

6 Conclusions and Future Work 144

6.1 Conclusions 144

6.2 Future Work 146

6.2.1 Deep Learning-Accelerated Planning Under Uncertainty 146

6.2.2 Aggressive Navigation for UGVs 149

Bibliography 149

Vita 169

xi

List of Tables

3.1 Quatitative results for MM-RRT* and additive approach 62

4.1 Information of three outdoor datasets 100

4.2 Average feature content of a scan after feature extraction 103

4.3 Iteration number comparison for LeGO-LOAM 105

4.4 Runtime of modules for processing one scan (ms) 106

4.5 Relative pose estimation error when returning to start 106

5.1 Traversability mapping quantitative results of two datasets 122

5.2 Quantitative results for various super-resolution methods 135

xii

List of Figures

1.1 Clearpath Jackal, an unmanned ground vehicle 4

2.1 RRT* tree demonstration 15

2.2 T-RRT tree demonstration 16

2.3 BRM and FIRM demonstration 17

2.4 Optimal substructure planning example 18

2.5 Collar line registration process 20

2.6 Segmented point cloud for loop closure detection 21

2.7 Edge and planar features from LOAM 22

2.8 Traversability values calculated using an elevation map 24

2.9 Traversability assessment using point cloud 25

3.1 MM-RRT* trees under different values of threshold 35

3.2 A comparison of the RRT*, T-RRT* and MR-RRT* algorithms 39

3.3 MR-RRT* tree in a terrain map 41

3.4 Paths produced by RRT*, T-RRT* and MR-RRT* 41

3.5 Mean accumulated distance cost and mean risk cost 1 43

3.6 Mean accumulated distance cost and mean risk cost 2 44

3.7 MM-RRT* rewiring example 54

3.8 Tree comparition of RRT* and MM-RRT* 57

3.9 Tree comparition of RRT* and MM-RRT* in a hallway 58

3.10 Benchmarking results of MM-RRT* 59

3.11 Tree comparison in Willow Garage map 61

3.12 Real-world test using MM-RRT* 65

xiii

3.13 Optimal substructure planning example 1 71

3.14 Optimal substructure planning example 2 72

3.15 Breadth-first search example 74

3.16 Search process of breadth-first search 75

3.17 Search process of BRMS 76

3.18 Paths returned from BFS and BRMS 79

3.19 Dubins paths planned by BFS and BRMS 80

3.20 Benchmarking results of BFS and BRMS 81

3.21 UAV planning example using BFS and BRMS 82

3.22 Real-world planning example using BRMS 83

4.1 System overview of LeGO-LOAM 88

4.2 Demonstration of point cloud ground separation 88

4.3 Demonstration of point cloud segmentation in an urban environment 89

4.4 Demonstration of point cloud segmentation in a noisy enviroment 90

4.5 Demonstration of feature extraction 91

4.6 Lidar odometry module overview 92

4.7 Lidar mapping feature matching 94

4.8 Demonstration of feature extraction of LOAM and LeGO-LOAM 96

4.9 Local maps from both LOAM and LeGO-LOAM on rough terrain 97

4.10 Global maps from both LOAM and LeGO-LOAM on rough terrain 98

4.11 Maps of LeGO-LOAM using two outdoor datasets 100

4.12 Map comparison between LOAM and LeGO-LOAM 101

4.13 Experiment 3 LeGO-LOAM mapping result. 102

4.14 Paths produced by LOAM and LeGO-LOAM 104

4.15 KITTI dataset loop closure test 107

xiv

5.1 Traversability calculation criteria 114

5.2 Traversability mapping process 116

5.3 Traversability mapping results in structured environment 119

5.4 Traversability mapping results in unstructured environment 120

5.5 ROC curves of two datasets 121

5.6 Traversability map of a large-scale urban area 123

5.7 Workflow for lidar super-resolution 126

5.8 Demonstration of point cloud from CARLA 127

5.9 Neural network architecture for lidar super-resolution 129

5.10 Smoothing effects after applying convolutions 130

5.11 Lidar super-resolution test using indoor dataset 132

5.12 ROC curves for the simulated indoor dataset 134

5.13 CARLA Town 01 mapping results 1 136

5.14 CARLA Town 01 mapping results 2 137

5.15 ROC curves for CARLA Town 01 dataset 137

5.16 Ouster dataset mapping results 139

5.17 Local mapping results using Ouster dataset 1 140

5.18 Local mapping results using Ouster dataset 2 141

5.19 Point cloud visualization using Ouster dataset 142

5.20 Range visualization using Ouster dataset 143

6.1 Localizability map with ellipses 146

6.2 Localizability map for Willow Garage 147

6.3 Local localizability map for Willow Garage 147

6.4 Path library for aggressive navigation 148

1

Chapter 1

Introduction

The challenging task of performing fully embedded autonomous navigation in com-

plex outdoor 3D environments has motivated this dissertation. This challenge has

inspired our development of new algorithms, which feature minimalistic design, real-

time performance, and machine learning techniques, for autonomous navigation on

ground robots with limited computational resources. A detailed motivation and prob-

lem statement are introduced in Section 1.1. The contributions of this dissertation

are summarized in Section 1.2.

1.1 Motivation and Problem Statement

Mobile robots have been attracting more and more research interest during the last

few decades. They are preferable to manually executing dangerous missions such as

mine sweeping, environment exploration and bomb diffusion. However, many tasks

still need human intervention as full autonomy is still a challenge to achieve in many

contexts. In this dissertation, we focus on the autonomous navigation algorithms of

unmanned ground vehicles as they are more widely used in real-world applications.

Planning is a fundamental component of a autonomous navigation system.

Planning converts the high-level requirements of a task to low-level commands of

how to execute. Planning algorithms provide solutions to a mission by considering

two basic criteria: feasibility and optimality. The feasibility of a solution guarantees

the robot’s safe arrival at a goal state. The optimality of a solution means that it

is the most efficient way with respect to some criterion, such as time or distance, to

reach at this goal state. Numerous efforts has been proposed in the last few decades

2

to address planning problems with various cost constraints. A common approach for

motion planning is to divide the workspace into 2D or 3D grid cells. Then a graph

search algorithm (e.g., Dijkstra, A* and D*) can be utilized for finding an optimal

path if it exists. However, such approaches are only suitable for robots with low

state dimension. Over the past two decades, sampling-based planning algorithms,

such as rapidly-exploring random trees and probabilistic roadmaps have drawn great

attentions as they are highly successful in solving problems with high dimension.

Simultaneous Localization and Mapping (SLAM) is also a key component in

designing a truly autonomous system. Both internal and external measurements from

sensors can be used to localize a robot. Given this position information, the robot

is able to build a map that contains its knowledge of the surrounding environment.

Many successful 2D SLAM techniques are available for UGVs. However, assuming the

surrounding world is planar limits the capabilities of UGVs in many circumstances.

Stairs, slopes or obstacles that lie outside of a sensor’s field of view may cause a

navigation failure and thus cannot be ignored. SLAM in 3D environments remains

challenging due to various constraints, including rough terrain and the presence of

complex ambient structures. Incorporating these constraints into SLAM is essential,

as flat environments exist only in a few highly structured settings.

Though many SLAM methods have been proposed in the last decade to perform

localization and mapping in 3D environments, one common problem among them is

that they are usually computationally expensive. Utilization of rich features in 3D

environments is often required to achieve accurate localization. However, the quality

of such features can make this problem non-trivial. For example, the most popular

scan-matching algorithm, Iterative Closest Point (ICP), has difficulty with the large

amount of points that is typically generated by a 3D lidar. Due to the small size

of many UGVs, few of them have the necessary computational resources to perform

3

real-time SLAM. Besides this, achieving accurate mapping with limited sensor data

in 3D environments is also a challenging task. Point cloud maps and digital elevation

maps are two of the most widely used representations. However, acquiring a dense

map of the environment typically requires a significant amount of data from various

sensors. One of the most popular sensors for such task is a lidar, which stands for

Light Detection and Ranging. A typical 3D lidar has multiple channels and uses light

in the form of a pulsed laser to measure ranges. A lidar with more channels is able to

produce a denser point cloud, which may benefit the mapping task greatly. However,

increasing the number of channels can be very costly.

Many robot platforms have achieved full autonomy in complex outdoor envi-

ronments. However, the complex sensor setup and the custom-designed system for

each robot make the extension of these work to other platforms difficult. With the

goal of a minimalistic and lightweight design in mind, we want to develop autonomous

navigation algorithms that have such properties:

• They should require as few sensors as possible. A common sensor that can be

used in various environments should be supported.

• They should be lightweight and don’t demand much computational power to

achieve real-time performance. With a lightweight navigation system, the robot

will be able to perform other on-board computations.

• They should be able to support UGV operation in both indoor and complex

outdoor environments. Navigation algorithms that support the operation of a

robot in outdoor environments will open many opportunities for its application.

• They should be applicable to general platforms. We will achieve this by ensuring

compatibility with Robot Operating System (ROS). Currently, more than 80

4

Figure 1.1: Clearpath Jackal, an unmanned ground vehicle.

different ground robots are fully supported by ROS. The compatibility of a

autonomous navigation algorithm with ROS will greatly extend its usage.

The goal of this dissertation is to design autonomous navigation algorithms

that can achieve the properties mentioned above. The proposed algorithms in this

dissertation will be validated on a real robot - Clearpath Jackal, which is shown in

Figure 1.1. Powered by a 270 Watt hour Lithium battery, it has a maximum speed

of 2.0m/s and maximum payload of 20kg. The Jackal’s computer is equipped with

a core i7-4770s processor and 8GB ram. The Jackal is equipped with a Velodyne

VLP-16 “puck” 3D Lidar. The puck’s measurement range is up to 100m with an

accuracy of ± 3cm. It has a vertical field of view of 30◦(±15◦) and a horizontal

field of view of 360◦. The 16-channel sensor provides a vertical angular resolution of

2◦. The horizontal angular resolution varies from 0.1◦ to 0.4◦ based on the rotation

rate. Throughout the dissertation, we choose a scan rate of 10Hz, which provides a

horizontal angular resolution of 0.2◦.

5

1.2 Overview and Contributions

This dissertation is organized as follows. In Chapter 2, we review the methodologies

that are proposed for achieving autonomous navigation. These methodologies cover

multi-objective motion planning, lidar-based localization, traversability mapping and

lidar super-resolution.

In Chapter 3, we present three novel multi-objective planning algorithms that

leverage lexicographic optimization method for various planning settings. In Chapter

3.1, we propose a new sampling-based path planning algorithm, the Optimal Mini-

mum Risk Rapidly Exploring Random Tree (MR-RRT*), that plans minimum risk

paths in accordance with primary and secondary cost criteria. The primary cost crite-

rion is a user-defined measure of accumulated risk, which may represent proximity to

obstacles, exposure to threats, or similar. Risk is only penalized in areas of the config-

uration space where it exceeds a user-defined threshold, causing many graph nodes to

achieve identical primary cost. The algorithm uses a secondary cost criterion to break

ties in primary cost. The proposed method affords the user the flexibility to tune the

relative importance of the alternate cost criteria, while adhering to the requirements

for asymptotically optimal planning with respect to the primary cost. The algorithm’s

performance is compared with T-RRT*, another optimal tunable-risk planning algo-

rithm, in a series of computational examples with different representations of risk. In

Chapter 3.2, we describe a new sampling-based path planning algorithm, the Min-

Max Rapidly Exploring Random Tree (MM-RRT*), for robot path planning under

localization uncertainty. The projected growth of error in a robot’s state estimate

is curbed by minimizing the maximum state estimate uncertainty encountered on a

path. The algorithm builds and maintains a tree that is shared in state space and

belief space, with a single belief per robot state. Due to the fact that many states

6

will share the same maximum uncertainty, resulting from a shared parent node, the

algorithm uses secondary objective functions to break ties among neighboring nodes

with identical maximum uncertainty. The algorithm offers a compelling alternative

to sampling-based algorithms with additive cost representations of uncertainty, which

will penalize high-precision navigation routes that are longer in duration. In Chapter

3.3, we characterize and propose advances in the technique of Belief Roadmap Search

(BRMS), the process of searching a roadmap in belief space for robot motion planning

under localization uncertainty. We discuss the conditions required for optimal sub-

structure in the single-source search of a roadmap in belief space, demonstrating that

there are several desirable cost functions for which this property cannot be achieved.

Practical performance issues of BRMS are discussed, including the implications of a

commonly-used anti-cycling rule, and the computational complexity realized in prac-

tical applications of the technique. We propose a best-first implementation of BRMS,

in contrast to the standard breadth-first implementation, which we show to improve

the computational cost of search by up to 49% by eliminating unnecessary node ex-

pansions - the mechanics of both approaches are compared in detail. A variety of

motion planning examples are explored.

In Chapter 4, we propose a lightweight and ground-optimized lidar odometry

and mapping method, LeGO-LOAM, for real-time 6 degree-of-freedom (DOF) pose es-

timation with ground vehicles. LeGO-LOAM is lightweight, as it can achieve real-time

pose estimation on a low-power embedded system. LeGO-LOAM is ground-optimized,

as it leverages the presence of the ground in its segmentation and optimization steps.

We apply point cloud segmentation to filter out noisy points. A two-step Levenberg-

Marquardt optimization method is proposed to provide reliable and fast optimization

across two consecutive scans. We compare the performance of LeGO-LOAM with a

state-of-the-art method, LOAM, using datasets gathered from variable-terrain envi-

7

ronments with ground vehicles, and show that LeGO-LOAM achieves similar or better

accuracy with reduced computational expense. We also integrate LeGO-LOAM into

a SLAM framework to eliminate the pose estimation error caused by drift, which is

tested using the KITTI dataset.

In Chapter 5, we introduce two novel learning-enhanced perception methods.

First, we present a new approach for traversability mapping with sparse lidar scans

collected by ground vehicles, which leverages probabilistic inference to build descrip-

tive terrain maps. Enabled by recent developments in sparse kernels, Bayesian gen-

eralized kernel inference is applied sequentially to the related problems of terrain

elevation and traversability inference. The first inference step allows sparse data to

support descriptive terrain modeling, and the second inference step relieves the bur-

den typically associated with traversability computation. We explore the capabilities

of the approach over a variety of data and terrain, demonstrating its suitability for

online use in real-world applications. Second, we propose a methodology for lidar

super-resolution with ground vehicles driving on roadways, which relies completely

on a driving simulator to enhance, via deep learning, the apparent resolution of a

physical lidar. To increase the resolution of the point cloud captured by a sparse 3D

lidar, we convert this problem from 3D Euclidean space into an image super-resolution

problem in 2D image space, which is solved using a deep convolutional neural net-

work. By novelly applying Monte-Carlo dropout in the network and removing the

predictions with high uncertainty, our method produces high accuracy point clouds

comparable with the observations of a real high resolution lidar. We present experi-

mental results applying our method to several simulated and real-world datasets. We

argue for the method’s potential benefits in real-world robotics applications such as

occupancy mapping and terrain modeling.

The main contributions of this dissertation are as follows:

8

• Three novel and efficient multi-objective planning algorithms that leverage lexi-

cographic optimization methods for planning under risk and uncertainty [1, 2, 3];

• A novel lidar odometry framework that achieves state-of-the-art low drift and

runs on a low-powered embedded system [4];

• A novel traversability mapping method that utilizes Bayesian generalized kernel

inference [5];

• A novel architecture for deep learning-enabled lidar super-resolution.

9

Chapter 2

Background

This chapter contains a survey of prior work on multi-objective motion planning,

lidar-based localization, traversability mapping and lidar super-resolution topics. We

start with an introduction of multi-objective motion planning, reviewing algorithms

and methods that are generally used in this field. Recent achievements in lidar-based

localization are presented next. Then we give a review of traversability mapping

methods as well as their applications. We close the chapter with a survey of lidar

super-resolution-related techniques.

2.1 Multi-Objective Motion Planning

Multi-objective motion planning has been an area of interest in robotics for many

years. Continuous multi-objective motion planning in two and three dimensions has

been achieved by gradient descent, paired with sampling the Pareto front to identify

feasible solutions under added constraints [6]. [6] looks for paths with feasible costs

combination by sampling on the Pareto optimal surface. However, it may not find

the optimal feasible solution if a nonconvex Pareto front exists. The number of state

space dimension and cost metrics also limit the application of this method. Genetic

algorithms [7, 8] and dynamic programming [9, 10, 11] have also been applied to solve

multi-objective motion planning problems. Early work on multi-objective planning

over configuration space roadmaps [12] has been succeeded by methods that recover

Pareto fronts from probabilistic roadmaps [13, 14].

In pursuit of solutions that can be produced quickly, preferably in real-time,

and applied to problems of high dimension, sampling-based motion planning algo-

10

rithms such as the PRM [15], the rapidly-exploring random tree (RRT) [16], and

their optimal variants PRM*, RRT*, and rapidly-exploring random graphs (RRG)

[17] have been adapted to solve a variety of multi-objective motion planning prob-

lems. Such approaches have typically considered the tradeoff between a resource such

as time, energy, or distance traveled and information gathered [18], localization un-

certainty [19, 20], collision probability [21], clearance from obstacles [22], adherence

to rules [23], and exposure to threats [13] and other generalized representations of

risk [24, 25].

2.1.1 Weighted Sum Method

A weighted sum method is probably the most popular optimization approach to

multi-objective planning. Optimization is achieved by minimizing a weighted sum of

the competing costs (Equation 2.1). This method will be abbreviated as WS in the

discussion and results to follow.

fws(σ) =
k∑
i=1

wifi(σ) (2.1)

where
k∑
i=1

wi = 1

Since a simple weight can be assigned to a cost metric of interest, WS method

is particularly suitable for problems with more than two different types of cost cri-

teria. A particle filter based path planning approach is proposed in [26]. This paper

uses a cost function that combines distance cost and collision avoidance requirement.

The collision cost of a path segment in the single composite cost function is calculated

by inverting the shortest distance from this segment to the nearest obstacle. Vari-

ous clearance paths can be obtained by adjusting the weight of each cost. [27] and

11

[28] also propose similar solutions for solving path safety problems while considering

path duration. The difference is that [28] uses an entropy method to determine the

weights for several criteria. [29] and [30] take map uncertainty into account along

with distance, which can offer trade-offs between the speed of building map versus

the accuracy of resulting map. A probabilistically conservative heuristic for planning

under uncertainty is proposed in [31] by combining distance cost and uncertainty cost

using the weighted sum method.

Note that the WS method can be sensitive to the choices of weights, where very

small differences can have a large impact on the quality of the solutions obtained. This

is potentially caused by the sum of different units of costs. For example, combining

two costs, fuel consumed in gallons and distance traveled in centimeters, needs extra

attention. In order to recover a Pareto front, a systematic procedure for solving

an optimization problem using WS would involve choosing many combinations of

weights, building a tree or searching a roadmap with each, and choosing, among

various paths, the solution that satisfies the user. As a result, a tree or roadmap

needs to be built or searched repeatedly for many resulting weight combinations,

which can be computationally expensive. If the weight is discretized finely enough,

WS can recover a satisfying Pareto front. However, if the weight is not discretized

finely enough, the user is left to guess where finer discretization is needed, and the

user must reason in unintuitive units.

2.1.2 Constraint-based Methods

σ∗ = argmin
σ∈Σ

fi(σ) s.t. fj(σ) ≤ B (2.2)

Another popular approach for multi-objective planning is constraint-based

12

methods. As is described in Equation 2.2, constraint-based methods find the min-

imum cost solution within the limit of a user-defined constraint (or budget, i.e.,

fuel, time, collision probability). For problems that need to maximize the cost func-

tion (i.e., gathering information, transmitting data), without losing any generality,

constraint-based methods can be represented as the formation in Equation 2.3.

σ∗ = argmax
σ∈Σ

fi(σ) s.t. fj(σ) ≤ B (2.3)

Chance Constraint RRT, CC-RRT, uses collision probability as a constraint

to extend an RRT [32]. Asymptotic optimality is achieved in [33] by adapting RRT*

with collision probability. CC-RRT and CC-RRT* can generate probabilistically safe

paths for linear Gaussian systems that are subject to sensor noise and localization

uncertainty. In [21], chance constraints are used again in an rapidly-exploring random

graph for similar systems as mentioned previously. A heuristic search method is pre-

sented in [34] for solving motion planning problems under uncertainty. The heuristic

cost function in this work is a combination of distance cost and collision probability,

which is similar to the WS method. The search of the roadmap, which is an adapted

A* algorithm, is also constrained by collision probability. An expanded graph search

that is constrained by budget is proposed in [35]. This work uses Dijkstra search on

multiple layers that are assigned with a fixed budget of some resource. As a result, a

Pareto front can be recovered by increasing the budget for each layer. [36] and [19]

use a new metric, the maximum eigenvalue of state estimation error covariance, to

calculate collision probability and as a constraint for multi-objective planning. Infor-

mation gathering algorithms, which maximize an information quality metric under a

budget constraint, are proposed in [18].

Constraint-based methods can usually return a Pareto front of costs by ad-

13

justing the value of the constraint. However, in order to recover a Pareto front, this

method has the same problem, discretization of the constraint, as the WS method

does. Again, if the constraint is discretized finely enough, this method can recover

optimal paths that land on the Pareto front. If the constraint is not discretized finely

enough, the user is left to guess where finer discretization is needed. Another problem

of using this method is caused by the selection of the constraint before the planning.

If the value of constraint is set too small, paths may never be found. On the other

hand, if this value is set too large, a satisfactory solution may also be hard to find. For

example, we want to find the shortest distance path that satisfies a specified collision

probability α. The selection of α needs to take the environment into consideration.

For a cluttered environment, a large α is preferred as a lower collision probability

path may not exist.

2.1.3 Lexicographic Method

The lexicographic method [37] is the technique of solving a multi-objective optimiza-

tion problem by arranging each of several cost functions in a hierarchy reflecting their

relative importance. The objectives are minimized in sequence, and the evolving solu-

tion may improve with respect to every subsequent cost function if it does not worsen

in value with respect to any of the former cost functions. In effect, regions of the

feasible set where there are ties in high-priority cost functions will have those ties bro-

ken using lower-priority cost functions. Use of this methodology has been prevalent

in the civil engineering domain, in which numerous regulatory and economic criteria

often compete with the other objectives of an engineering design problem. Variants of

the lexicographic method have been used in land use planning [38], for vehicle detec-

tion in transportation problems [39], and in the solution of complex multi-objective

problems, two criteria at a time [40].

14

The problem of lexicographic optimization can be formulated as follows [41]:

min
σi∈Σ

fi(σi) (2.4)

subject to : fj(σi) ≤ fj(σ
∗
j)

j = 1, 2, ...i− 1; i = 1, 2, ..., k.

In the current phase of the procedure depicted in Equation 2.4, a new solution σ∗i

will be returned if it does not increase in cost with respect to any of the prior cost

functions j < i previously examined. Necessary conditions for optimal solutions of

Equation 2.4 were first established by [42]. Relaxed versions of this formulation have

also been proposed, in which fj(σi) ≤ fj(σ
∗
j) is permitted, provided that fi(σi) is no

more than a small percentage larger in value than fj(σ
∗
j). This approach, termed the

hierarchical method [43], has also been applied to multi-criteria problems in optimal

control [44].

2.1.4 Applications

Since sampling-based planning algorithms have proven to be highly successful in solv-

ing problems of high dimension [45], we limit the scope of this dissertation to such

planning algorithms. Sampling-based planning algorithms are capable of planning

under a variety of challenging costs and constraints. Algorithms such as the prob-

abilistic roadmap (PRM), rapidly exploring random tree (RRT), and their optimal

variants PRM* and RRT* [17], have been adapted to curb robot state uncertainty

in the objective [46], [33] and constraints [21], [47], maximize information-gathering

under energy constraints [18], minimize distance traveled under task-based [48] and

risk-based [25] constraints, efficiently explore narrow passages [49], and formulate

multi-objective Pareto fronts [14]. Due to the limit of the scope of this disserta-

15

Figure 2.1: RRT* for minimum-distance planning. Red rectangles represent the
obstacles in the 2D worksprace. Image credit: S. Karaman, and E. Frazzoli, 2011
[17].

tion, we focus on utilizing sampling-based planning algorithms to solve two problems:

planning under risk and planning under uncertainty.

2.1.4.1 Planning Under Risk

One challenging motion planning problem is planning under risk. The minimization

of risk may entail maintaining a safe distance from obstacles, avoiding exposure to

threats, or other related objectives. To reduce risk by achieving clearance from ob-

stacles, many successful feasible planning methods have been proposed. Medial axis

probabilistic roadmaps (MAPRM) [50] and medial axis biased rapidly-exploring ran-

dom trees (MARRT) [51] improve the performance of sampling in narrow passages

and maintain clearance by retracting randomly generated configurations onto the me-

dial axis of the free space. A PRM driven by a sum of weighted costs has been used

to address path length, path clearance, and kinematic and dynamic constraints [22].

Obstacle-based rapidly-exploring random trees (OBRRT) use “hints” from obstacles

16

Figure 2.2: Search tree built by T-RRT. Traveling at high elevation introduces risk
cost. Image credit: D. Devaurs, T. Simeon, and J. Cortes, 2011 [53].

to assist in clearing narrow passages [52].

To minimize exposure to threats, a multi-objective PRM (MO-PRM) was em-

ployed to find the shortest path meeting constraints on exposure [14]. This algorithm

is also capable of handling a variety of generalized primary and secondary costs. Sim-

ilarly, transition-based rapidly exploring random trees (T-RRTs) produce generalized

low-risk solutions by probabilistically rejecting samples that are drawn in high-risk

regions of the configuration space [53]. This can be used to maximize clearance from

obstacles, or to avoid exposure to threats.

T-RRT*, an extension of T-RRT [53], inherits the property of asymptotic opti-

mality from RRT* while maintaining T-RRT’s ability to achieve high clearance from

obstacles [24]. This method has successfully solved complex optimal planning prob-

lems while maintaining clearance from obstacles. However, to maintain a high safety

margin, this algorithm must avoid high-risk regions throughout the entire configu-

ration space. It is challenging to plan to or through a high-risk location while also

maintaining safety elsewhere in the graph.

A key property shared among the above formulations of risk is the dependency

17

(a) BRM (b) FIRM

Figure 2.3: Belief roadmap (BRM) and feedback controller-based information-state
roadmap (FIRM). Image credit: S. Prentice, and N. Roy, 2009 [46], A. Agha, S.
Chakravorty, and N. M. Amato, 2014, [54]

of the risk function on a single robot configuration. Although quantities such as state

estimate uncertainty and collision probability may also serve as measures of risk, such

measures depend on the robot’s initial error covariance, and measurement and action

histories, lying outside the scope of the risks discussed in this dissertation, which

depend on a single robot configuration.

2.1.4.2 Planning Under Uncertainty

Another challenging motion planning problem is planning under uncertainty, which

may seek to find feasible or asymptotically optimal plans in the presence of probabilis-

tic actions, measurements, and/or environment maps. Sampling-based approaches

to planning under uncertainty have typically assumed that belief spaces are Gaus-

sian. The objective function itself may address the uncertainty associated with a

localization process, as in the case of the belief roadmap (BRM) [46] and robust

belief roadmap (RBRM) [47]. Standard minimum-distance or minimum-energy ob-

jective functions may also be used in combination with constraints related to localiza-

18

(a) Planning using trace as cost metric (b) Planning using maximum eigenvalue
as cost metric

Figure 2.4: An example in which the optimal substructure property does not hold
when using the error covariance trace as a planning metric. Image credit: S. Bopar-
dikar, B. Englot, A. Speranzon, and J. van den Berg, 2016 [47]

tion uncertainty, as in the case of the rapidly-exploring random belief tree (RRBT)

[21], bounded-uncertainty RRT* (BU-RRT*) [20], Box-RRT [55], and an expanded

adaptation of the PRM [19]. Chance-constrained RRT* (CC-RRT*) has combined

these concepts into a sampling-based algorithm that enforces constraints on a robot’s

collision probability while also penalizing collision risk in the objective [33]. Such

problems can also be formulated as stochastic optimal control problems, solved by

feedback motion planning, as with linear quadratic Gaussian motion planning (LQG-

MP) [56] and the Feedback Controller-Based Information-State Roadmap (FIRM)

[54], or by approximating optimal policies for Markov decision processes (MDPs) and

partially observable Markov decision processes (POMDPs), as with the Stochastic

Motion Roadmap (SMR) [57], incremental-MDP (iMDP) [58], and Adaptive Belief

Tree (ABT) [59].

The feedback controller-based information-state roadmap (FIRM) [54] gener-

ates a graph in belief space that has independent edge costs due to the implementation

of belief-stabilizing controllers, which preserve the optimal substructure property. A

19

latter work enforces constraints on localization uncertainty over a PRM by search-

ing an expanded graph that represents the PRM at different levels of uncertainty

[19]. The robust belief roadmap (RBRM) [47] employs a novel uncertainty metric,

an upper bound on the maximum eigenvalue of the EKF covariance matrix P, which

preserves the optimal substructure property when searching to minimize goal-state

uncertainty. However, when the trace of P or the true maximum eigenvalue of P are

used as planning metrics instead, optimal substructure is not guaranteed. A roadmap

search example in which the true maximum eigenvalue of P fails to produce optimal

substructure is given in Figure 2.4(a). The optimal path from S to I is not a subset

of the optimal path from S to Goal, unlike the case in Figure 2.4(b), which uses the

eigenvalue upper bound metric instead.

2.2 Lidar-based Localization

Among the capabilities of an intelligent robot, map-building and state estimation

are among the most fundamental prerequisites. Great efforts have been devoted

to achieving real-time 6 degree-of-freedom simultaneous localization and mapping

(SLAM) with vision-based and lidar-based methods. Although vision-based meth-

ods have advantages in loop-closure detection, their sensitivity to illumination and

viewpoint change may make such capabilities unreliable if used as the sole navigation

sensor. On the other hand, lidar-based methods will function even at night, and the

high resolution of many 3D lidars permits the capture of the fine details of an envi-

ronment at long ranges, over a wide aperture. Therefore, we focus on the techniques

using 3D lidar to support real-time state estimation.

The typical approach for finding the transformation between two lidar scans

is iterative closest point (ICP) [60]. By finding correspondences at a point-wise level,

20

Figure 2.5: An example of a collar line registration process. Two sets of extracted
collar lines from two unaligned scans are aligned for yielding a final transformation.
Image credit: M. Velas, M. Spanel, and A. Herout, 2016 [72].

ICP aligns two sets of points iteratively until stopping criteria are satisfied. When

the scans include large quantities of points, ICP may suffer from prohibitive com-

putational cost. Many variants of ICP have been proposed to improve its efficiency

and accuracy [61]. [62] introduces a point-to-plane ICP variant that matches points

to local planar patches. Generalized-ICP [63] proposes a method that matches local

planar patches from both scans. In addition, several ICP variants have leveraged

parallel computing for improved efficiency [64, 65, 66, 67].

Feature-based matching methods are attracting more attention, as they re-

quire less computational resources by extracting representative features from the en-

vironment. These features should be suitable for effective matching and invariant

of point-of-view. Many detectors, such as Point Feature Histograms (PFH) [68] and

Viewpoint Feature Histograms (VFH) [69], have been proposed for extracting such

features from point clouds using simple and efficient techniques. A method for ex-

tracting general-purpose features from point clouds using a Kanade-Tomasi corner

detector is introduced in [70]. A framework for extracting line and plane features

from dense point clouds is discussed in [71].

Many algorithms that use features for point cloud registration have also been

proposed. [74] and [75] present a keypoint selection algorithm that performs point

21

Figure 2.6: Segmented point clouds are used for loop closure detection. Image credit:
R. Dube, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, 2016 [73].

curvature calculations in a local cluster. The selected keypoints are then used to

perform matching and place recognition. By projecting a point cloud onto a range

image and analyzing the second derivative of the depth values, [76] selects features

from points that have high curvature for matching and place recognition. Assuming

the environment is composed of planes, a plane-based registration algorithm is pro-

posed in [77]. An outdoor environment, e.g., a forest, may limit the application of

such a method. A collar line segments (CLS) method, which is especially designed for

Velodyne lidar, is presented in [72]. CLS randomly generates lines using points from

two consecutive “rings” of a scan. Thus two line clouds are generated and used for

registration. However, this method suffers from challenges arising from the random

generation of lines. A segmentation-based registration algorithm, SegMatch, is pro-

posed in [73]. SegMatch first applies segmentation to a point cloud. Then a feature

vector is calculated for each segment based on its eigenvalues and shape histograms.

A random forest algorithm is used to match the segments from two scans.

A low-drift and real-time lidar odometry and mapping (LOAM) method is pro-

posed in [78] and [79]. LOAM performs point feature to edge/plane scan-matching

to find correspondences between scans. Features are extracted by calculating the

22

Figure 2.7: An example of extracted edge points (yellow) and planar points (red)
from a 3D lidar scan. Image credit: J. Zhang, and S. Singh, 2014 [78].

roughness of a point in its local region. The points with high roughness values are

selected as edge features. Similarly, the points with low roughness values are des-

ignated planar features. Real-time performance is achieved by novelly dividing the

estimation problem across two individual algorithms. One algorithm runs at high

frequency and estimates sensor velocity at low accuracy. The other algorithm runs at

low frequency but returns high-accuracy motion estimation. The two estimates are

fused together to produce a single motion estimate at both high frequency and high

accuracy. LOAM’s resulting accuracy is the best achieved by a lidar-only estimation

method on the KITTI odometry benchmark site [80].

2.3 Traversability Mapping

Applying autonomous navigation in real-world scenarios require accurate representa-

tion of the environment. Methodologies for 2D planar navigation [81] require fewer

constraints to be considered while mapping and manuevering, however, assuming the

surrounding world is planar limits the capabilities of UGVs in many circumstances.

23

Stairs, slopes or obstacles that lie outside of a sensor’s field of view may cause a

navigation failure when they are encountered during task execution. Autonomous

navigation in 3D environments remains challenging due to various constraints, in-

cluding rough terrain and the presence of complex ambient structures. Incorporating

these constraints into UGV navigation is essential, as flat environments exist only in

a few highly structured settings. To perceive and evaluate the environment, a wide

field of view is typically required, enabled by cameras or a volumetric scanning lidar.

Using these sensors, many methods have achieved successful terrain traversability

analysis for various UGV platforms.

When a 2D lidar is used to perceive 3D environments, it is typically mounted

on a rotating mechanism to generate a 3D point cloud. Three such lidars were used to

generate point clouds for autonomous navigation in [82]. The point cloud is converted

into a 2D occupancy grid map by classifying planes in the environment as clear,

obstacles, unknown or expensive (traversable but should be avoided). Assuming the

world is composed of flat planes, [83] used a segmentation method to partition a

point cloud into traversable planes. A fuzzy inference method was proposed in [84]

for terrain analysis. Two traversability associated values, roughness and slope, are

input to the inference method for analysis, generating a vector field histogram for

motion planning.

In contrast with 2D lidar, cameras and 3D lidar have seen wider usage in

traversability analysis for UGVs. A navigation system was developed in [85] based on

stereo cameras, in which the perceived stereo images are used for pose estimation and

terrain modeling. The traversability of the terrain is calculated using three criteria:

slope, roughness and step height. [86] presented a method that constructs a mesh

representation of the 3D navigable terrain for motion planning tasks. Using a Kinect

sensor, [87] analyzed terrain traversability by three factors: maximum step height

24

(a) Elevation map (b) Traversability value

(c) Slope (d) Roughness (e) Step height

Figure 2.8: Traversability values calculated using an elevation map: slope, roughness
and step height. Image credit: A. Chilian, and H. Hirschmüller, 2014 [85].

limit, maximum slope and robot height. A graph-based approach that maps a point

cloud onto a 2D grid of cells with elevation information was mentioned in [88]. The

traversability of a cell is then labeled based on the slope value between this cell and

the neighboring cells. Equipped with a 2D lidar and stereo camera, BigDog [89] is able

to navigate in unstructured outdoor environments. By projecting obstacles into a 2D

world, a grid-based model of the terrain is used for planning along with a proposed

A* path planner. An RRT*[17] based planner was implemented in [90] for planning

with a rescue robot. Terrain roughness is evaluated by comparing height differences

with a threshold that is determined by the robot’s maximal traversable height. [91]

proposed a traversability estimation method for UGVs in rough terrain. Two sensors,

a 3D lidar and camera, are used independently to build separate traversability maps.

The 3D lidar measures the slope of the ground, while the camera collects training

data for a terrain classifier. The separate maps are then fused using Bayes’ rule to

improve terrain characterization.

25

Figure 2.9: Terrain assessment results in an urban environment. Image credit: P.
Krsi, P. Furgale, M. Bosse, and R. Siegwart, 2016 [97].

Many learning-based evaluation methods have been proposed for traversability

analysis, using cameras and ranging. [92] presented an approach for terrain surface

detection in forests using self-supervised visual learning. In this work, the ground

planes, which are assigned using a supervised support vector machine (SVM) clas-

sifier, are used to generate training samples for a visual classifier. [93] introduced

a reinforcement learning based traversability analysis method, which is trained on

obstacles composed of pallets, and tested in natural forest environments. An offline

method that uses Gaussian processes to classify the traversability of terrain was pro-

posed in [94], in which the samples for training are acquired while driving the robot

through traversable terrain. A semi-supervised learning method was used in [95] for

traversability analysis, in which the underlying model is inferred from positive labeled

training data that is acquired from traversable terrain. A normal distributions trans-

form traversability mapping (NDT-TM) approach was introduced in [96]. A SVM was

used to distinguish traversable and non-traversable areas in densely forested terrain.

Raw lidar-derived point cloud maps can also be used for traversability classifi-

cation and navigation. Successful path planning was achieved in [98] by assessing the

traversable surface of a point cloud with a tensor voting framework. A tensor voting

26

process was also applied in [99] to evaluate the traversability of point cloud data for

a rescue robot. The robot, which has 10 degrees-of-freedom, is able to navigate in

complex 3D environments that require stair-climbing using the D* algorithm for path

planning. The “driving on point clouds” framework was introduced in [97], in which

the traversability of the point cloud map is evaluated by a local terrain assessment

method, computing the robot-size terrain roughness for a map point, without recon-

structing the terrain like many previous works. The proposed planning approach in

[97] is composed of three main steps: (1) an initial feasible trajectory is computed

using RRTs, (2) the initial path is optimized by an RRT*-based method, and (3) the

local trajectory is optimized according to a user-defined cost function. Though [99]

and [97] can achieve autonomous navigation for a ground robot in 3D environments,

and [97] can classify map points as static/dynamic and manage them accordingly,

these frameworks need a relatively dense point cloud map to be provided prior to

planning.

Despite the success of these methods, applying traversability mapping to real-

world online navigation is still nontrivial, as a prior map is not always available and a

UGV may lack the required perceptual and/or computational capability to navigate

robustly. Lidar-based traversability mapping methods often suffer from sparse data,

which limits their ability to provide sufficient coverage to support autonomous navi-

gation. To solve this problem, a terrain modeling process can be introduced to predict

terrain height in unknown locations before traversability analysis. Gaussian process

(GP) regression has been applied to estimate terrain height in locations not directly

observed by a robot’s range sensor [100]. However, the complexity of GPs has lim-

ited their use in real-time computation requiring incremental updates. A variational

Hilbert regression (VHR) framework is proposed in [101] to generate accurate terrain

models. VHR outperforms GPs in terms of both accuracy and efficiency. However,

27

the parameter tuning required, along with a potentially costly iterative optimization,

may limit its application to real-world online mapping tasks.

2.4 Lidar Super-resolution

The work of lidar super-resolution is most related to the image super-resolution prob-

lem, which aims to enhance the resolution of a low-res image. Many techniques have

been proposed over the past few decades and have achieved remarkable results [102].

Traditional approaches such as linear or bicubic interpolation [103], or Lanczos re-

sampling [104], can be very fast but oftentimes yield overly smooth results. Recently,

with developments in the machine learning field, deep learning has shown superiority

in solving many prediction tasks, including the image super-res problem. Methods

based on deep learning aim to establish a complex mapping between low-res and

high-res images. Such a mapping is usually learned from massive training data where

high-res images are available. For example, a super-resolution convolutional neural

network, SR-CNN, trains a three-layer deep CNN end-to-end to upscale an image

[105]. Over time, deeper neural networks with more complex architectures have been

proposed to further improve the accuracy [106, 107, 108, 109]. Among them, SR-GAN

[109] achieves state-of-the-art performance by utilizing a generative adversarial net-

work [110]. The generator of SR-GAN, which is called SR-ResNet, is composed of two

main parts, 16 residual blocks [111] and an image upscaling block. A low-res image

is first processed by the 16 residual blocks that are connected via skip-connections

and then upscaled to the desired high resolution. The discriminator network of SR-

GAN is a deep convolutional network that performs classification. It discriminates

real high-res images from generated high-res images. It outperforms many other im-

age super-res methods, including nearest neighbor, bicubic, SR-CNN and those of

28

[106, 107, 108], by a large margin.

Another problem that is related to lidar super-resolution is depth completion.

The goal of this task is to reconstruct a dense depth map with limited information.

Such information usually includes a sparse initial depth image from a lidar or from

an RGB-D camera [112, 113]. Typically, an RGB image input is also provided to

support depth completion, since estimation solely from a single sparse depth image is

oftentimes ambiguous and unreliable. For instance, a fast depth completion algorithm

that runs on a CPU is proposed in [114]. A series of basic image processing operations,

such as dilation and Gaussian blur, are implemented for acquiring a dense depth map

from a sparse lidar scan. Though this method is fast and doesn’t require training on

vast data, its performance is inferior when compared with many other approaches.

A self-supervised depth completion framework is proposed in [115]. In this work, a

deep regression network is developed to predict dense depth from sparse depth. The

proposed network resembles an encoder-decoder architecture and uses sparse depth

images generated by a lidar, with RGB images as optional inputs. Another problem

that is closely related to depth completion is depth prediction, which commonly utilizes

images from a monocular or stereo camera [116, 117, 118, 119]. Due to our focus here

on a lidar-only super-resolution method, an in-depth discussion of this problem lies

beyond the scope of this dissertation.

Instead of solving the super-resolution problem in image space, PU-Net [120]

operates directly on point clouds for upsampling, and adopts a hierarchical feature

learning mechanism from [121]. This approach performs super-resolution on point

cloud models of individual small objects.

29

Chapter 3

Efficient Multi-Objective Planning

In this chapter, we utilize the lexicographic optimization method that is mentioned

in Section 2.1.3, and introduce three novel and efficient sampling-based planning

algorithms for two problems: planning under risk and planning under uncertainty.

The rest of the chapter is organized as follows. A sampling-based planning algorithm

that optimizes two costs in a hierarchy is proposed for planning under risk in Section

3.1. A Min-Max rapidly-exploring random tree algorithm that optimizes three costs

is presented for planning under uncertainty in Section 3.2. A probabilistic roadmap-

based planning algorithm is described in Section 3.3 for multi-query planning under

uncertainty.

3.1 Minimum-Risk Planning

To address the problem of planning under risk, we introduce the optimal Minimum

Risk Rapidly Exploring Random Tree (MR-RRT*), which can enter high risk regions

when they are a critical component of feasibility, while penalizing them in general.

Like T-RRT*, the level of risk avoidance is tunable, except risk is addressed in the

objective rather than through a sample rejection constraint. A risk penalty is only

imposed on regions of the configuration space that lie above a user-designated thresh-

old. As a result, many nodes in the tree achieve identical values of primary cost, and

a secondary cost function, such as accumulated distance along the path, may be used

to break ties in the primary, risk-based cost. In areas of the configuration space

where risk is not a priority, paths may be constructed with respect to the secondary

cost criterion instead, allowing a user to tune the relative importance of the two cost

30

criteria.

3.1.1 Problem Definition

Let C ⊂ Rd be a robot’s configuration space. x ∈ C represents the robot’s position

and volume occupied in C. Cobst ⊂ C denotes the set of obstacles in C that will cause

collision with the robot. Cfree = cl(C\Cobst), in which cl() represents the closure of an

open set, denotes the space that is free of collision in C. We will assume that given

an initial configuration xinit ∈ Cfree, the robot must reach a goal region Xgoal ⊂ Cfree.

Let a path be a continuous function σ : [0, 1]→ Rd of finite length. Let Σ be the set

of all paths σ in a given configuration space. A path is collision-free if σ ∈ Cfree for all

arguments, and a collision-free path is feasible if σ(0) = xinit and σ(1) ∈ Xgoal. The

problem of finding a feasible path may be specified using the tuple (Cfree, xinit, Xgoal).

A cost function c : Σ → R+
0 returns a non-negative cost for all collision-free paths.

We may now define an optimal path planning problem.

Definition 1 (Optimal Path Planning). Given a path planning problem and a cost

function c : Σ → R+
0 , find a feasible path σ* such that c(σ∗) = min{c(σ) | σ ∈

Cfree, σ(0) = xinit, σ(1) ∈ Xgoal} if such a path exists, and report failure otherwise.

We express optimal path planning problems using the tuple (Cfree, xinit, Xgoal, c).

We are principally concerned with optimal path planning problems that admit a

robustly optimal solution, which is required for the optimality properties established

in [17] to apply. A robustly optimal solution must have neighboring paths in the same

homotopy class with spatial clearance from surrounding obstacles in all dimensions

of C. Limiting our analysis to the broad class of problems that admit this type of

solution will allow MR-RRT* to inherit the asymptotic optimality properties of RRT*.

We now define asymptotic optimality [17].

31

Definition 2 (Asymptotic Optimality). A sampling-based algorithm A for solving

the optimal path planning problem is asymptotically optimal if, for any optimal path

planning problem (Cfree, xinit, Xgoal, c) admitting a robustly optimal solution of finite

cost c∗ ∈ R+
0 , the cost c(σ) of the current solution obtained by A approaches c∗ as

the number of samples drawn by the algorithm approaches infinity.

Due to our consideration of sampling-based algorithms only for the solution of

optimal path planning problems, we will assume the robot moves through Cfree along

paths obtained from a directed graph G(V,E), with vertices V and edges E. Our

proposed algorithm uses the following primary cost function, which penalizes the risk

accumulated along a path that is derived from G:

cRisk(σ) :=

∫ σ(1)

σ(0)

Risk(σ(s))ds (3.1)

Risk(x) :=

 R(x), if R(x) > RiskThreshold

0 otherwise
(3.2)

where the function Risk : Cfree → R+
0 evaluates the risk at an individual robot config-

uration. We penalize a robot’s risk using the tunable risk threshold RiskTheshold ∈

R+. R : Cfree → R+ represents the strictly positive underlying risk at a robot config-

uration, which is evaluated against RiskThreshold and returned if the threshold is

exceeded. We will alternately express cRisk(σ) using the notation RI(σ(0), σ(1)) to

indicate the specific configurations at the limits of the risk integral.

In addition, we define a secondary cost csecond as follows:

csecond(σ) :=

∫ σ(1)

σ(0)

Second(σ(s))ds (3.3)

where the function Second : Cfree → R+ represents a strictly positive cost, ensuring

32

that ties in secondary cost do not occur as they do for primary cost. We will alter-

nately express csecond(σ) using the notation SI(σ(0), σ(1)) to indicate the limits of

the secondary cost integral.

The contribution of each configuration xi to either cost function is determined

by the location of xi of exclusively; there are no other dependencies. Two possi-

ble formulations of R(x) will be considered in the examples to follow, along with

Second(x) = 1, giving us a path integral for the secondary objective that returns the

distance accumulated over a path.

3.1.2 Algorithm Description

Our proposed thresholded minimum-risk planning algorithm, MR-RRT*, is given in

Algorithm 3.1. Provided with input (Cfree, xinit, Xgoal), the algorithm begins each

iteration by drawing a random sample and steering toward the sample from the

nearest node in G, resulting in the generation of a new node xnew. The best par-

ent for xnew is identified by examining all neighbors, Xnear, within a ball radius

that shrinks logarithmically according to γ(log(card(V))/card(V)), where γ > 2(1 +

1/d)1/d(µ(Cfree)/µdball)1/d. The volume of the d-dimensional unit ball in Euclidean

space is indicated by µdball. Since the algorithm performs geometric planning in Rd,

the Steer(xi, xj) function simply attempts to connect a line segment from xi to xj,

limiting the segment to the length of the ball radius if xj is farther than this from xi.

These steps are also employed by the standard RRT* algorithm.

The function RI(xnear, xnew) is used to evaluate, per Equation 3.1, the risk

accumulated while traveling to xnew from xnear. C(xnear) denotes the total risk ac-

cumulated in traveling from the root of the tree, xinit, to xnear. Xmin comprises the

node(s) in Xnear offering the path(s) of minimum accumulated risk to xnew. Due to

the fact that we employ a risk threshold, and some regions of Cfree do not penalize

33

Algorithm 3.1: MR-RRT*

Input: V ← {xinit};E ← ∅;
1 for i = 1, ..., n do
2 xrand ← Rand() ;
3 xnearest ← Nearest(V, xrand);
4 xnew ← Steer(xnearest, xrand);
5 if ObsFree(xnearest, xnew) then
6 Xnear ← Near(V,E, xnew);V ← V ∪ {xnew};
7 Xmin ← {xnearest};
8 cmin ← RI(xnearest, xnew) + C(xnearest);

9 for xnear ∈ Xnear do
10 if ObsFree(xnear, xnew) then
11 if RI(xnear, xnew) + C(xnear) < cmin then
12 Xmin ← {xnear};
13 cmin ← RI(xnear, xnew) + C(xnear);
14 else if RI(xnear, xnew) + C(xnear) = cmin then
15 Xmin ← Xmin ∪ {xnear};

16 xmin ← Tiebreak(Xmin, xnew);
17 E ← E ∪ {(xmin, xnew)};
18 for xnear ∈ Xnear \ {xmin} do
19 replace← false;
20 xparent ← Parent(xnear);
21 if ObsFree(xnew, xnear) then
22 cnear ← C(xnear);
23 cnew ← RI(xnew, xnear) + C(xnew);
24 if cnew < cnear then replace← true; ;
25 else if cnew = cnear then
26 Xpair ← {xparent, xnew};
27 if xnew = Tiebreak(Xpair, xnear) then
28 replace← true;

29 if replace = true then
30 E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};
31 Xchildren ← Children(xnear);
32 RecursivePropagate(xnear, Xchildren);

33 return G = (V,E)

Algorithm 3.2: Tiebreak(Xtied, xchild)
1 cbest ← +∞ ;
2 for xi ← Xtied do
3 if SI(xi, xchild) + SC(xi) < cbest then
4 cbest ← SI(xi, xchild) + SC(xi);
5 xbest ← xi;

6 return xbest

34

the travel of the robot, several nodes in Xnear may offer identical primary cost. Con-

sequently, Xmin ⊆ Xnear may contain multiple nodes, requiring the tie to be broken

using a secondary cost function. Tiebreak(), detailed in Algorithm 3.2, breaks ties in

primary cost using SC(xi), the accumulated secondary cost from xinit to xi, and the

secondary cost integral SI(xi, xj), from the candidate node xi to the child node xj .

After xnew is connected to a parent in Xnear, MR-RRT* attempts to “rewire”

all of the nodes in Xnear by replacing each parent by xnew if it can reduce the primary

cost, or in the instance of a tie, reduce the secondary cost. This process compares

the risk cost of traveling to xnear via xnew, denoted as cnew, with the current risk cost

at xnear, denoted cnear. If xnew offers a lower risk cost, it will replace the parent of

xnear. If xnew and the parent of xnear offer identical risk cost, then secondary cost is

used to break the tie between the two candidate parent nodes of xnear.

The value of RiskThreshold effects the influence of the primary and secondary

cost functions on the resulting tree. Let us assume that the inverse distance transform

is adopted asR(x), and our secondary cost function is represented by the accumulated

distance along a path. When RiskTheshold is infinite, risk is penalized nowhere in the

configuration space. In this case, MR-RRT* reduces to RRT* and produces minimum-

distance paths. When RiskThreshold is positive and finite, the regions within a

designated distance of the obstacles are considered dangerous, and risk is penalized

in those regions. When RiskThreshold is zero, risk is penalized everywhere and the

secondary cost function does not play a role. The paths generated by MR-RRT*

follow the medial axis of the free space before heading toward their respective goal

regions. Figure 3.1 shows an example of trees in these three situations respectively,

with 10,000 samples used in the construction of each tree.

35

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(a) RiskThreshold =∞
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

(b) RiskThreshold = 0.2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(c) RiskThreshold = 0

Figure 3.1: Trees generated by MR-RRT* under different values of RiskThreshold,
when R(x) is the inverse distance transform.

3.1.3 Algorithm Analysis

3.1.3.1 Asymptotic Optimality

Here we state several key assumptions and lemmas governing the MR-RRT* algo-

rithm. These assert that the algorithm possesses the required properties of the cost

function c(σ), established in the analysis of the original RRT* algorithm [17], to

produce asymptotically optimal solutions, and that the problem space will admit

asymptotically optimal solutions. We conclude with a theorem supported by these

points that states the asymptotic optimality of MR-RRT* with respect to its primary

cost function.

Assumption 1. All problems of interest to be solved by MR-RRT* admit robustly

optimal solutions.

For the property of asymptotic optimality to apply (i.e., for MR-RRT* to

converge almost surely toward an optimal solution in the limit), the problems solved

by MR-RRT* must admit robustly optimal solutions, as defined in Section 3.1.1.

Consequently, we will assume that all problems of interest have clearance between

36

obstacles, and the risk penalty is defined such that no regions of measure zero exist

in which risk penalties are absent.

Assumption 2. The primary cost crisk(σ) of any path produced by MR-RRT* is

bounded.

We assume that the risk-based cost functions adopted in MR-RRT* cannot take

on infinite values. When the inverse distance transform is adopted as the underlying

risk function R(x) used in crisk(σ), a choice that will enforce clearance from obstacles,

a limit must be imposed on the maximum value that R(x) is allowed to take on in

the close vicinity of obstacles. If a finite maximum value is imposed on R(x), then

crisk(σ) will be bounded.

Lemma 1. The primary cost crisk(σ) of any path produced by MR-RRT* is mono-

tonic.

Proof. Monotonicity, as defined in the original analysis of RRT* [17], implies that

c(σ1) ≤ c(σ1|σ2) ∀ σ1, σ2 ∈ Σ, where σ1|σ2 is the concatenation of two paths such

that they are joined together at the terminal configuration of σ1 and the initial con-

figuration of σ2. The risk cost Risk(x) at every individual configuration x that

contributes to the cost of a path is a function of the geometric location of x only, by

the function definitions in Equations 3.1 and 3.2. Hence, the concatenation of two

paths σ1 and σ2 will not cause the individual costs of either path to change, and due

to the use of an integral cost function, the cost of σ1|σ2 will simply be the sum of

c(σ1) and c(σ2). Because the risk cost of every node and every path is non-negative,

c(σ1) cannot exceed c(σ1|σ2) in value.

Together these results and assumptions allow us to state the following:

37

Theorem 1 (Asymptotic Optimality of MM-RRT*). The MR-RRT* algorithm is

asymptotically optimal.

This is due to the fact that the requirements for MR-RRT* to inherit the

asymptotic optimality properties of RRT* are satisfied with respect to the cost func-

tion, which must be bounded and monotonic, and satisfied with respect to the class

of path planning problems considered, which must admit robustly optimal solutions.

3.1.3.2 Computational Complexity

We now comment on the computational complexity of MR-RRT*. We begin by

reviewing the computational complexity of RRT*. Calls to the functions Nearest()

and ObsFree(), used in Algorithm 3.1 with the same frequency that they are used in

RRT*, are typically the most expensive operations for large graphs that also require

many geometric primitives to represent the surrounding obstacles. In a single iteration

of both Algorithm 3.1 and standard RRT*, O(log(n)) is the worst-case complexity of

finding nearest neighbors, and O(log(n)) total calls are made to ObsFree(). The time

complexity of building a standard RRT* tree over n iterations is hence considered to

be O(n log(n)).

This complexity also holds for MR-RRT* with respect to these two operations.

However, in the case of MR-RRT* we are also concerned with any additional compu-

tational expense due to evaluating a primary and secondary cost function. In a single

iteration of MR-RRT*, the primary cost function will be evaluated over O(log(n))

edges, equivalent to the number of calls made to ObsFree(). In the worst case, MR-

RRT* also requires a second cost evaluation of every graph edge, by the secondary

cost function, that would not occur in the case of standard RRT*. However, this

is only a constant-factor increase in complexity, and does not change the original

38

worst-case result. Hence, the time complexity of building the MR-RRT* tree over n

iterations remains at O(n log(n)), even if evaluating the cost of edges is considered

to be the dominant time-consuming operation. This is equivalent to the complexity

of the original RRT* algorithm.

3.1.4 Experiments

We employ a comparison of different algorithms to verify the effectiveness of path

planning with MR-RRT*. We assume that a robot is moving in a 100-by-100 meter

two-dimensional workspace, shown in Figure 3.2. This domain contains several ob-

stacles depicted in blue. Seven goal regions, numbered from one to seven in Figure

3.2(a), are chosen to compare the results of the competing algorithms. Each goal

region is a circle with radius 2 meters, and the robot is placed at xinit = (5, 5) in all

problem instances compared.

In these experiments, the inverse distance transform is adopted as the risk-

based primary cost function, and we set RiskThreshold = 0.2. In other words, when

the robot is greater than or equal to 5 meters away from the obstacles or boundaries

of the domain, we consider such configurations to be safe for the robot, and they

are not penalized. When the distance from the robot to the nearest obstacle or

environment boundary is smaller than 5 meters, the risk threshold is surpassed and a

penalty is imposed. All subsequent children and the branches descending from such

configurations inherit a non-zero risk cost because they share the same a common

ancestor exposed to risk. In Figure 3.2, nodes are plotted in colors varying from

green (zero risk) to red (high risk) depicting the value of the primary cost function

throughout the tree.

The first algorithm used in the comparison is RRT*. The results of path

planning offered by RRT* are given in Figure 3.2(a). RRT* can produce shorter paths

39

(a) (b)

(c) (d)

Figure 3.2: A comparison of the RRT*, T-RRT* and MR-RRT* algorithms in an
obstacle-filled environment, with a risk cost equivalent to the inverse distance trans-
form. The trees formed by RRT*, T-RRT* (Trate = 0.1), T-RRT* (Trate = 0.5) and
MR-RRT* are shown in (a), (b), (c) and (d) respectively. Obstacles are depicted
in blue. The best paths to seven representative goal regions from the root node are
highlighted in black. Graph edges and nodes are colored from green to red to indicate
the risk cost of each path.

compared with T-RRT* and MR-RRT*. However, the risk costs of paths produced

by RRT* are the highest of all the methods explored. When the tree bypasses the

obstacles in the domain, some nodes are very close to obstacles due to the fact that

RRT* strictly minimizes the accumulated distance cost. All children of these nodes

40

will share a parent with a high risk cost.

The second algorithm employed is T-RRT*. The tunable parameter Trate :

(0, 1] regulates a rejection sampling criterion that governs the clearance of paths from

surrounding obstacles, while the cost function penalizes accumulated distance. When

Trate = 0.1 in Figure 3.2(b), the paths generated by T-RRT* can always maintain

safe distances from obstacles. But in this case, T-RRT* fails to offer feasible paths

for some goal regions as it has a hard time landing samples in high-risk locations near

the obstacles or boundaries of the environment. When Trate = 0.5 in Figure 3.2(c),

T-RRT* succeeds in reaching all goal regions after generating 10,000 nodes, but some

paths have a higher risk cost than the paths with Trate = 0.1.

The last algorithm compared is MR-RRT*. MR-RRT* can always find paths,

which are shown in Figure 3.2(d), to reach goal regions that are feasible for RRT*,

while maximizing the safety of these paths. The differences between MR-RRT* and

T-RRT* are clear when we examine the effect of T-RRT*’s Trate parameter. T-RRT*

can behave like MR-RRT* when the value of Trate is small enough, but in these

instances T-RRT* fails to reach many goal regions. With a higher value of Trate,

T-RRT* can reach all goal regions. However, the paths obtained from T-RRT* with

Trate = 0.5 become dangerous as a result. For example, the path which connects the

start position and goal region 5, which lies behind a circular obstacle, is dangerous

since it includes a node that is close to the first obstacle met. MR-RRT* can identify

feasible paths to all goal regions while keeping a safe distance from obstacles. When

approaching goal regions 3 and 5, MR-RRT* tries to avoid getting too close to the

obstacles before reaching destinations. When approaching goal regions 1 ,4 and 7,

MR-RRT* selects a detour to avoid narrow corridors.

Further comparisons are made in a terrain map shown in Figure 3.4. The robot

travels in a 180 by 360 by 50 meter domain shown in Figure 3.3. The risk cost is

41

Figure 3.3: An MR-RRT* tree in a terrain map that penalizes altitude at all altitudes
higher than RiskThreshold. Terrain that is not penalized is depicted in purple.

(a) (b)

 (c) (d)

Figure 3.4: Paths produced by RRT*, T-RRT* (Trate = 0.1), T-RRT* (Trate = 0.9)
and MR-RRT* are shown in (a), (b), (c) and (d) respectively over a terrain map, for
five example goal regions. Each tree used to obtain the paths was constructed using
10,000 samples. The colors of the terrain map depict altitude, which serves as the
risk representation used in this example, with yellow denoting high altitude.

dictated by the altitude of robot, as we assume that high altitudes expose the robot

to threats. In these experiments, we set Riskthreshold = 5. Regions with elevation

42

below 5 meters (depicted in purple) are considered safe. Traveling in the regions with

elevation above 5 meters increased the possibility being detected. The color of the

domain changes from purple to yellow as the altitude increases.

The paths given by the three algorithms in the terrain map are similar to the

previous results given in 2-D environments. RRT* travels over high elevation regions

to obtain minimum distance paths. T-RRT* can travel while avoiding being detected

in low elevation regions with a smaller Trate, but it has difficulties reaching the goal

regions of high elevation. This is because T-RRT* with a low Trate will reject the new

samples landing in the higher elevation regions, and this results in these regions being

unexplored. The probability of arriving at a high elevation region increases with a

larger Trate, but the safety of the path becomes worse. Since we are testing T-RRT*

in different environments, Trate must be adjusted to obtain less conservative results,

in contrast to the parameters depicted in Figure 3.2. When Trate is increased to 0.9,

satisfactory results are obtained, although they are exposed to high risk. The tree

generated by MR-RRT*, however favors travel through low-altitude valleys where

possible. MR-RRT* also has no trouble arriving at any of the goal regions in Cfree

that are also reached by RRT*.

In order to perform a fair and comparable evaluation for these three algorithms,

we perform 100 trials for each algorithm in the same environment with same start

and goal regions. Each trial includes 10,000 samples in the tree. When calculating

the risk cost for a path, all three algorithms use same RI() and SI() functions to

achieve an impartial comparison.

The results depicted in Figure 3.5 come from the solutions in 2-D obstacle-

filled environments shown in Figure 3.2. The mean distance and mean risk cost of 7

representative goal regions selected in Figure 3.2 are used for this test. The number

above each column shows the times of a goal region is reached after 100 trials. In

43

Goal Location
1 2 3 4 5 6 7

M
ea

n
D

is
ta

nc
e

Al
on

g
Pa

th

0

20

40

60

80

100

120

140

160

100
100

100

100

99

0

72
100

1006 92
100

10018 96

100 10015 98
100

100100100100

100

88

100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.5)
MR-RRT*

Goal Location
1 2 3 4 5 6 7

M
ea

n
R

is
k

C
os

t A
lo

ng
 P

at
h

0

10

20

30

40

50

60

70

80

100

100100
100

99

0

72

100

100

6
92

100

100

18

96

100

100

15

98

100 100100100100

100

88

100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.5)
MR-RRT*

(a)
Goal Location

1 2 3 4 5 6 7

M
ea

n
D

is
ta

nc
e

Al
on

g
Pa

th

0

20

40

60

80

100

120

140

160

100
100

100

100

99

0

72
100

1006 92
100

10018 96

100 10015 98
100

100100100100

100

88

100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.5)
MR-RRT*

Goal Location
1 2 3 4 5 6 7

M
ea

n
R

is
k

C
os

t A
lo

ng
 P

at
h

0

10

20

30

40

50

60

70

80

100

100100
100

99

0

72

100

100

6
92

100

100

18

96

100

100

15

98

100 100100100100

100

88

100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.5)
MR-RRT*

(b)

Figure 3.5: The mean accumulated distance cost and mean risk cost to the seven
marked goal regions in the workspace of Figure 3.2 is depicted, averaged over 100
trials.

Figure 3.5(a), the cumulative distance costs using each algorithm are quantified for

each of the seven goal regions. It is obvious that RRT* outperforms the other two

algorithms by offering shorter paths. When Trate = 0.1, T-RRT* is very conservative

and fails to reach goal region 2 after 100 trials. Goal regions 3, 4 and 5 are only

reached 6, 18 and 15 times respectively. When Trate = 0.5, T-RRT* becomes less

conservative and the numbers of reaching different goal regions increase. All three

algorithms have zero risk cost when arriving at goal region 6 since it is located in

safe regions. The risk cost along paths are presented in Figure 3.5(b). MR-RRT* has

obvious advantages over standard RRT* and T-RRT* by offering lower risk cost. The

44

Goal Location
1 2 3 4 5

M
ea

n
D

is
ta

nc
e

Al
on

g
Pa

th

0

100

200

300

400

500

600

100

100
100

100

100 4 90 100

100

68

99

100 100

5
84

100
100 100 100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.9)
MR-RRT*

Goal Location
1 2 3 4 5

M
ea

n
R

is
k

C
os

t A
lo

ng
 P

at
h

0

500

1000

1500

2000

2500

3000

100

100

100

100

100
4 90

100

100

68
99

100

100

5

84

100

100

100 100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.9)
MR-RRT*

(a)
Goal Location

1 2 3 4 5

M
ea

n
D

is
ta

nc
e

Al
on

g
Pa

th

0

100

200

300

400

500

600

100

100
100

100

100 4 90 100

100

68

99

100 100

5
84

100
100 100 100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.9)
MR-RRT*

Goal Location
1 2 3 4 5

M
ea

n
R

is
k

C
os

t A
lo

ng
 P

at
h

0

500

1000

1500

2000

2500

3000

100

100

100

100

100
4 90

100

100

68
99

100

100

5

84

100

100

100 100

100

RRT*
T-RRT*(Trate = 0.1)
T-RRT*(Trate = 0.9)
MR-RRT*

(b)

Figure 3.6: The mean accumulated distance cost and mean risk cost to the five marked
goal regions in the terrain map of Figure 3.4 is depicted, averaged over 100 trials.

mean risk cost of seven paths is decreased by 94.75% compared with RRT*, 69.7%

compared with T-RRT* with Trate = 0.1 and 87.3% compared with T-RRT* with

Trate = 0.9 by using MR-RRT*.

Similar results are obtained and shown in Figure 3.6 after performing each

algorithm in a terrain map over 100 trials for five representative goal regions. RRT*

can offer the shortest paths for each goal region. MR-RRT* can always offer the

lowest risk cost paths. The mean risk cost of four paths is decreased by 78.86%

compared with RRT*, 66.39% compared with T-RRT* with Trate = 0.1 and 74.75%

compared with T-RRT* with Trate = 0.9 by using MR-RRT*.

Conservative T-RRT* with a low Trate can offer solutions with high clearance,

45

but it encounters difficulty reaching goal regions in risky areas. T-RRT* with a high

Trate is less conservative, but the risk cost of path is increased dramatically. The

ability to obtain feasible, low-risk paths with MR-RRT* is a compelling alternative.

Our computational trials were performed with the use and modification of the RRT*

code provided by the authors of [17].

3.1.5 Conclusions

In this section, we have introduced a new path planning algorithm, MR-RRT*, that

allows planning to and through high-risk areas of the configuration space using a

tunable hierarchy of primary and secondary cost functions, while retaining the prop-

erty of asymptotic optimality in the primary cost function. By placing risk in the

primary objective, rather than addressing it through a sample rejection constraint,

MR-RRT* will land samples in areas that typically cannot be reached by T-RRT*

when the safest route possible is desired. A compromise between safety and efficiency

can be achieved through adjustment of the tunable risk threshold, without sacrificing

thorough coverage of the configuration space.

46

3.2 Min-Max Uncertainty Planning

In this section, we introduce a min-max variant of the RRT* algorithm we term the

Min-Max Rapidly Exploring Random Tree, or MM-RRT*. In addition to utilizing

a min-max uncertainty metric, which will be detailed in the sections to follow, the

algorithm builds and maintains a tree that is shared in state space and belief space,

with a singe belief per robot state. The algorithm also uses secondary objective

functions to break ties among neighboring nodes with identical maximum uncertainty.

3.2.1 Problem Definition

3.2.1.1 Path Planning:

The problem definition is similar to the definition mentioned in Section 3.1.1. Let C

be a robot’s configuration space. We will assume that a configuration x ∈ C describes

the pose of the robot. Cobst ⊂ C denotes the subset of configurations in C that are in

collision with an obstacle, and Cfree ⊆ (C \ Cobst) denotes the configurations that are

free of collision. We will assume that given an initial configuration xinit ∈ Cfree, the

robot must reach a goal region Xgoal ⊂ Cfree . Let a path be a continuous function

σ : [0, T] → C of finite length, traversed in finite time T , for which we assume a

series of control inputs must be applied to the robot to achieve this path in C. Let

Σ be the set of all paths σ in a given configuration space. A path is collision-free if

σ ∈ Cfree for all arguments, and a collision-free path is feasible if σ(0) = xinit and

σ(T) ∈ Xgoal. A cost function c : Σ → R+ returns a strictly positive cost for all

non-trivial collision-free paths.

47

3.2.1.2 State Estimation and Uncertainty

We consider a robot whose state evolves as a nonlinear, discrete-time dynamical

system:

xk+1 = f(xk,wk) (3.4)

yk = hk(xk, vk) (3.5)

where xk =
[
ẋk xk

]
is the state of the system at time k, and describes the position

and velocity of the robot in each degree of freedom. The robot’s measurement at

time k is yk, and is supplied by a suite of sensors whose availability will vary as a

function of the robot’s location in the environment. At time k, the robot is influenced

by independent zero-mean Gaussian process noise wk, with covariance Qk, and sensor

noise vk, with covariance Rk.

The robot’s state may be estimated using an extended Kalman filter (EKF)

[122], which is propagated as follows:

P−1
k+1 = (FkPkF

′
k + Qk)

−1 + H′k+1R
−1
k+1Hk+1 (3.6)

x̂k+1 = Pk+1

(
(FkPkF

′
k + Qk)

−1Fkx̂k+ (3.7)

H′k+1R
−1
k+1(yk+1 −Hk+1x̂k)

)
where x̂k is the state estimate, Pk is the robot’s estimation error covariance at time

k, and Fk and Hk represent the Jacobians of f and hk about (x̂k, 0) and (f(x̂k), 0),

respectively. To penalize growth of the error covariance in the course of path planning,

estimation error is ideally represented as a scalar cost metric. This has been achieved

previously in the context of sampling-based planning algorithms using tr(P), the error

covariance trace [46], and λ(P), the maximum eigenvalue of P [47].

48

However, this latter work also proposes an upper bound on λ(P), ` ≥ λ(P),

which, unlike the above metrics, admits optimal substructure when applied to the

breadth-first search of a graph in belief space. A recursive update for ` results from

the following inequality, which is derived from Equation 3.7:

λ(Pk+1) ≤ λ(FkF
′
k)λ(Pk) + λ(Qk)

(λ(H′kR
−1
k Hk))(λ(FkF′k)λ(Pk) + λ(Qk)) + 1

(3.8)

where the operator λ() represents the minimum eigenvalue of a positive definite ma-

trix. Due to this inequality, the upper bound ` ≥ λ(P) may be propagated according

to the following update rule, initialized using `0 = λ(P0) :

`k+1 =
λ(FkF

′
k)`k + λ(Qk)

(λ(H′kR
−1
k Hk))(λ(FkF′k)`k + λ(Qk)) + 1

. (3.9)

Using ` as an uncertainty metric offers a small improvement in computational effi-

ciency over other metrics, since the propagation of uncertainty in Equation 3.9 uses

extreme eigenvalues [123], rather than the repeated computation of P−1 required in

Equation 3.6. We thus adopt ` as our scalar representation of uncertainty, although

the proposed MM-RRT* algorithm may be used with any scalar uncertainty metric.

3.2.1.3 Robot Motion Assumptions

We assume a robot moves through Cfree along paths obtained from a directed graph

G(V,E), with vertices V and edges E. Specifically, all graphs considered are trees.

We make several assumptions regarding the consistency, stability, and synchrony of

the estimation, motion, and measurement processes, adapted from [19]:

1. The filter produces a consistent estimate, and the corresponding error covariance

is a measure of the precision of the filter.

49

2. There exists a low-level controller that ensures the robot follows the planned,

nominal trajectory between any two vertices of the graph.

3. The measurements from all sensors are synchronized.

The first assumption implies that our motion and measurement models accurately

represent the behavior of the robot. The second assumption implies that the robot is

capable of recovering from process noise disturbances. The third assumption implies

that measurements from all sensors will arrive in the order that their observations

occur, such that a planning algorithm may predict their arrival. Our goal is to leverage

our knowledge of the environment, motion and sensor models to prevent the growth

of uncertainty to an extent that the above assumptions may be violated.

In general, a robot’s state and uncertainty comprise a belief, (x, `). A vertex

of an arbitrary graph may represent many beliefs achieved over different motion and

measurement histories. In a tree, however, there is only one path from the root xinit

to each node, and if all paths are initialized from the root with the same uncertainty

`init = λ(Pinit), there exists only one belief per node. Hereafter, when referring

to a configuration xk, we imply that xk has an associated error covariance Pk, an

eigenvalue bound `k, a dynamical state xk, and state estimate x̂k that are uniquely

identified by xk in concert with the initial uncertainty at the root of the tree.

3.2.1.4 Cost Function

To aid in defining our cost function, we first define G(`0)|σ(T)
σ(0) , a function that repre-

sents the composition of evaluations of Equation 3.9 over a path from σ(0) to σ(T),

where `0 represents the uncertainty at the start of the path. Every discrete-time

instant along the path represents a measurement update of the EKF. Our proposed

cost function, cmax(σ, `0), then scores a path by evaluating G from the start of the

50

path, where the intial uncertainty is `0, to every measurement update along the path,

returning the maximum.

G(`0)|σ(T)
σ(0) := (`T◦`T−1 ◦ ... ◦ `1)(`0) (3.10)

cmax(σ, `0) := max{G(`0)|σ(T)
σ(0) , G(`0)|σ(T−1)

σ(0) , (3.11)

..., G(`0)|σ(2)
σ(0), G(`0)|σ(1)

σ(0)}

We will hereafter abbreviate cmax(σ, `0) using the notation ` |σ(T)
σ(0) to indicate the start

and end states of the specific path evaluated, from which the maximum uncertainty `

is returned. The algorithm we propose below builds a tree that minimizes ` from root

node xinit, initialized with uncertainty `init = λ(Pinit), to all destinations in Cfree.

In addition, we define a secondary cost and tertiary cost, which are integral

cost functions, as follows:

csecond(σ) :=

∫ σ(T)

σ(0)

Second(σ(s))ds (3.12)

cthird(σ) :=

∫ σ(T)

σ(0)

Third(σ(s))ds (3.13)

where Second(x) and Third(x) are generalized functions of a single robot state. Each

subsequent cost function in our hierarchy will be used for breaking ties that occur

in the former. In the examples explored in our computational results below, all

workspaces are comprised of two types of spatial regions: regions in which the robot’s

pose is not directly observable, in which the pose uncertainty grows under dead reck-

oning, and regions in which the robot’s pose is directly observable (via GPS, the

measurement of environmental features, or similar), where error growth is curbed. In

these examples, csecond(σ) returns the distance traveled by a path σ in all regions that

lack observability of the robot pose, and cthird(σ) returns the distance traveled by a

51

Algorithm 3.3: MM-RRT*

Input: V ← {xinit};E ← ∅;
1 for i = 1, ..., n do
2 xrand ← Rand() ;
3 xnearest ← Nearest(V, xrand);
4 xnew ← Steer(xnearest, xrand);
5 if ObsFree(xnearest, xnew) then
6 Xnear ← Near(V,E, xnew);V ← V ∪ {xnew};
7 Xmin ← {xnearest;
8 cmin ←MaxBnd(xnearest, xnew);

9 for xnear ∈ Xnear do
10 if ObsFree(xnear, xnew) then
11 if MaxBnd(xnear, xnew) < cmin then
12 Xmin ← {xnear};
13 cmin ←MaxBnd(xnear, xnew);
14 else if MaxBnd(xnear, xnew) = cmin then
15 Xmin ← Xmin ∪ {xnear};

16 xmin ← Tiebreak(Xmin, xnew);
17 E ← E ∪ {(xmin, xnew)};
18 for xnear ∈ Xnear \ {xmin} do
19 replace← false;
20 if ObsFree(xnew, xnear) then
21 cnear ← Cost(xnear);
22 cnew ←MaxBnd(xnew, xnear);
23 if cnew < cnear then replace← true; ;
24 else if cnew = cnear then
25 Xpair ← {xparent, xnew};
26 if xnew = Tiebreak(Xpair, xnear) then
27 replace← true;

28 if replace = true then
29 E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};
30 Xchildren ← Children(xnear);
31 RecursivePropagate(xnear, Xchildren);

32 return G = (V,E)

path in all regions that offer such observability. We will alternately express csecond(σ)

using the notation SI(σ(0), σ(T)) and cthird(σ) using the notation TI(σ(0), σ(T)) to

indicate the limits of each integral.

52

Algorithm 3.4: Tiebreak(Xtied, xchild)

1 csecond ← +∞; cthird ← +∞;
2 for xi ← Xtied do
3 if SI(xinit, xi) + SI(xi, xchild) < csecond then
4 csecond ← SI(xinit, xi) + SI(xi, xchild);
5 xmin ← xi;

6 else if SI(xinit, xi) + SI(xi, xchild) = csecond then
7 if TI(xinit, xi) + TI(xi, xchild) < cthird then
8 cthird ← TI(xinit, xi) + TI(xi, xchild);
9 xmin ← xi;

10 return xmin

3.2.2 Algorithm Description

MM-RRT* is outlined in Algorithm 3.3. The algorithm proceeds similarly to RRT*,

beginning each iteration by drawing a random sample, steering toward the ran-

dom sample from the nearest neighboring node in the existing tree, and subse-

quently searching for the best parent for the newly-generated candidate node by

examining all neighbors within a ball radius that shrinks logarithmically according

to γ(log(card(V))/card(V)), where γ > 2(1 + 1/d)1/d(µ(Cfree)/µdball)1/d. The vol-

ume of the d-dimensional unit ball in Euclidean space is indicated by µdball. The

function MaxBnd(xnear, xnew) is used to evaluate the maximum uncertainty encoun-

tered while traveling to xnew from xinit on a path that includes xnear. To evaluate

MaxBnd(xnear, xnew), we need only propagate Equation 3.9 from xnear to xnew, and

the maximum error covariance eigenvalue bound encountered, ` |xnew
xnear

, is compared to

` |xnear
xinit

, the stored maximum value associated with parent node xnear. The larger of

the two values is returned by MaxBnd(xnear, xnew), and the resulting min-max after

a survey of Xnear is adopted as ` |xnew
xinit

, and stored as the cost associated with xnew.

Because belief propagation is occurring on a tree, we will only have a single belief

per node and there is no need to distinguish between geometric states xi and their

53

associated beliefs.

The min-max objective function will frequently result in ties among candidate

nodes in Xnear. This occurs when a maximum uncertainty value is derived from

a common ancestor node and shared among multiple descendants. MM-RRT* im-

plements tie-breaking using secondary and tertiary objective functions to impose an

ordering scheme among nodes of identical maximum uncertainty. This is indicated by

the use of the Tiebreak() function in Algorithm 3.4. In the implementation of MM-

RRT* discussed here, csecond, the cumulative distance traveled in the regions where

no GPS measurements are available, and cthird, the cumulative distance traveled in

the regions where GPS measurements are available, are used as the secondary and

tertiary objectives. Consequently, if two nodes, x1 and x2, are equally suitable par-

ents of xnew by the min-max objective, the node offering the minimum csecond to xnew

will be selected as the parent. If x1 and x2 offer the same primary and secondary

cost to xnew, then the node offering the minimum cthird to xnew will be selected as the

parent.

After a suitable parent is identified for xnew, both RRT* and MM-RRT* next

attempt to improve the cost of the other nodes in Xnear by considering the replace-

ment of their parents by xnew, known as rewiring. This is achieved by evaluating

MaxBnd(xnew, xnear) and comparing the result with the existing value of ` |xnear
xinit

. If

xnew offers a lower max uncertainty cost, it will replace the parent of xnear. If xnew

ties with the existing parent, then the Tiebrk() function is once again used to break

the tie and choose a parent for xnear.

If the rewiring procedure succeeds in replacing the parent of xnear, the costs

of all descendants of xnear must be updated. Unlike the standard RRT* algorithm,

the min-max costs are not additive from node to node and the bound ` must be

propagated anew from xnear to all of its descendants. This is performed by the

54

A

B

D E

(a) Initial tree

A

B

C

D E

(b) Rewiring after C is sampled

A

B

F

C

D E

(c) Rewiring after F is sampled

A

B

F

C

D E

(d) Rewiring after D’ is sampled

Figure 3.7: This example shows an instance in which a child node’s (E) max un-
certainty will first increase, then subsequently decrease, after a series of rewiring
operations that are favorable for E’s parent node, D. At top, path A-B-D-E will be
rewired to A-C-D-E upon the sampling of node C, and at bottom, path A-C-D-E will
be rewired to A-C-F-B-D’-D-E upon the sampling of nodes F, then D’. Blue regions
contain GPS availability, with an obstacle depicted in red.

RecursivePropagate() function, which recursively propagates the bound from the

parent to all children until all branches of the tree that descend from xnear have been

updated. The impact of this procedure on the algorithm’s asymptotic optimality and

computational complexity is discussed in the following section.

3.2.3 Algorithm Analysis

3.2.3.1 Monotonicity of the Min-Max Cost Metric

Unlike the standard RRT* algorithm, in MM-RRT*, it is possible for a rewiring

operation, despite lowering the cost at a parent node, to cause the cost at one or

more child nodes downstream from the parent to increase. A situation in which this

can arise is illustrated in Figure 3.7, where an obstacle is depicted in red, regions of

GPS availability are depicted in blue, and in all other regions, the robot, tasked with

planning a path from A to E, must navigate using odometry. Upon the sampling of

55

node C, a rewiring operation is performed, in which B, the original parent of node

D, is replaced with C, a new parent offering lower `, eliminating edge B-D. Despite

the fact that a lower max uncertainty exists at node C, it also has a higher current

uncertainty than node B. As a result, further downstream along the path from A

to E, the current uncertainty at node C will eventually give rise to a new value of

max uncertainty, which causes both the current uncertainty and max uncertainty at

node E to increase. However, this increase in max uncertainty at E is eventually

undone. When node F is added to the tree, it becomes the parent node of B through

rewiring. Subsequently, node D’ is added to the tree, and this triggers the rewiring

of D, eliminates edge C-D, and reduces both the current uncertainty and the max

uncertainty at node E to the lowest levels yet.

We first address why this occurs, given that the min-max cost function appears

to satisfy the two most commonly articulated properties for an admissible RRT*

cost metric: monotonicity, as the cost along a path is monotonic non-decreasing,

and boundedness, as the cost cannot instantaneously take on arbitrarily large values.

However, a property that the min-max metric lacks is monotonicity with respect to

the initial value of the cost metric at the beginning of a path. Consider the path from

D to E. Although, at top of Figure 3.7, parent node C offers a lower min-max cost

going into node D than its previous parent B, it results in higher min-max cost coming

out at node E. This second type of monotonicity is trivial in the case of most cost

metrics, and as such, it has not been articulated in prior analysis of RRT*. However,

this property does not hold for MM-RRT* in examples where a path’s uncertainty

undergoes a reset, such as by entering a GPS zone like those of Figure 3.7. Rewiring

a node’s parent to improve the child node’s uncertainty does not necessarily improve

the uncertainty of all of that child’s descendants.

Despite this, as C is populated with more nodes over the course of the MM-

56

RRT* algorithm, these occasional instances of “bad rewiring” will be mitigated

through subsequent rewiring of child nodes like E that are adversely affected by earlier

events, as illustrated at bottom of Figure 3.7 after the new nodes F and D’ are added

to the graph. In our computational results below, we provide empirical support that

the limiting behavior of the algorithm is for path costs to converge asymptotically,

toward optimal values. However, we cannot claim that these asymptotes represent

globally optimal solutions. Unlike the standard RRT* algorithm, a single instance

of rewiring will not cause all affected nodes to improve in cost simultaneously; there

will be fluctuations in cost with a net decrease that tends toward an asymptote. In

future work, we hope to analyze the global optimality of tree-based algorithms that

can undergo occasional setbacks en route to optimal solutions.

3.2.3.2 Computational Complexity

We now comment on the computational complexity of MM-RRT*. For a typical

sampling-based path planning algorithm that does not propagate beliefs over the

graph, the complexity of the Near() operation and the number of calls made to

ObsFree() are typically of greatest concern, as these are expensive operations for large

graphs that require many geometric primitives to represent the surrounding obstacles.

In the case of RRT*, in a single iteration O(log(n)) is the worst-case complexity of

finding nearest neighbors, and O(log(n)) total calls are made to ObsFree(). The time

complexity of building a tree over n iterations is hence considered to be O(n log(n)).

This complexity also holds for MM-RRT* with respect to these two opera-

tions. However, in the case of MM-RRT* we are also concerned about the number

times Equation 3.9 will be propagated across an edge of the graph. This will happen

O(n log(n)) times if we count only the belief propagations that are used to evaluate

candidate edges. These are the “expensive” belief propagation operations, occurring

57

X
0 0.25 0.5

Y

0

0.25

0.5

A

BB

D

(a) X
0 0.25 0.5

Y

0

0.25

0.5

A

B

C D

(b)

Figure 3.8: When only one secondary cost function Dist() is used to penalize distance
traveled, the resulting tree and a path connecting start and goal nodes are shown in
(a). When a secondary cost function SI() and a tertiary cost function TI() are used
together, the resulting tree and respective path are shown in (b). This approach curbs
the growth of uncertainty at D. The blue region indicates GPS availability, with an
obstacle in red. Edges of the trees are plotted in color varying from green to red to
indicate the current value of the eigenvalue bound ` (with higher ` in red) along each
path.

the first time an edge cost is computed. In addition, there are another worst-case

O(n2) propagations that will occur due to the calls made to RecursivePropagate(),

in which new beliefs are propagated over pre-existing graph edges. These propaga-

tions may occur at substantially lower cost, as the min and max eigenvalue terms in

Equation 3.9 will have already been evaluated over an edge. Consequently, MM-RRT*

requires O(n log(n)) non-trivial belief propagation operations over new and candi-

date graph edges, which is the same worst-case number of candidate edge evaluations

required by RRT*.

3.2.3.3 On the Use of Hierarchical Cost Functions

Secondary and tertiary cost functions are used to curb additional growth of uncer-

tainty when paths appear otherwise identical in primary cost. We can express the

58

(a) Additive Approach

(b) MM-RRT*

Figure 3.9: Trees generated by two competing approaches for planning under uncer-
tainty using the same sequence of random samples. Obstacles are indicated in red
and GPS zones (at the upper boundary of the domain) are rendered in blue. Edges of
the trees are plotted in color varying from green to red to indicate the current value
of the eigenvalue bound ` (with higher ` in red) along each path.

total accumulated distance along a path as Dist(σ(0), σ(T)) = SI(σ(0), σ(T)) +

TI(σ(0), σ(T)) using these cost functions. The benefit of this approach is illustrated

in Figure 3.8, in which there are four key tree nodes highlighted: A, the start node,

B, the first node arriving at the GPS region, C, a node in the GPS zone which has

the same y-axis value as node D, and D, the goal node. At node B, the path of

interest enters the GPS region, and node B and its descendants will each have sub-

stantially lower localization uncertainty than the max uncertainty encountered a few

steps earlier. As a result, ties exist among the children of node B, as they share the

same primary cost. If only a secondary cost function Dist() is applied here, the path

to node D will not travel through node C, as a direct route from B to D will offer

the shortest distance (shown in Figure 3.8(a)). However, we care more about the

value of ` over the path than the path’s length. When a tertiary cost function TI()

59

Number of Nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ax

im
um

 B
ou

nd
 E

nc
ou

nt
er

ed
(A

dd
iti

ve
 A

pp
ro

ac
h)

0

1

2

3

4

5

6

Path 1 Path 2 Path 3 Path 4 Path 5

(a) Max ` encountered, Additive Approach

Number of Nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
ax

im
um

 B
ou

nd
 E

nc
ou

nt
er

ed
(M

M
-R

R
T*

)

0

1

2

3

4

5

6

Path 1 Path 2 Path 3 Path 4 Path 5

(b) Max ` encountered, MM-RRT*

Number of Nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pa
th

 D
ur

at
io

n
(A

dd
iti

ve
 A

pp
ro

ac
h)

0

2

4

6

8

10

Path 1 Path 2 Path 3 Path 4 Path 5

(c) Path duration, Additive Approach

Number of Nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pa
th

 D
ur

at
io

n
(M

M
-R

R
T*

)

0

2

4

6

8

10

Path 1 Path 2 Path 3 Path 4 Path 5

(d) Path duration, MM-RRT*

Number of Nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Su
m

 o
f B

ou
nd

 O
ve

r P
at

h
(A

dd
iti

ve
 A

pp
ro

ac
h)

0

5

10

15

Path 1 Path 2 Path 3 Path 4 Path 5

(e) Sum of ` over path, Additive Approach

Number of nodes #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Su
m

 o
f B

ou
nd

 O
ve

r P
at

h
(M

M
-R

R
T*

)

0

5

10

15

Path 1 Path 2 Path 3 Path 4 Path 5

(f) Sum of ` over path, MM-RRT*

Paths
1 2 3 4 5

M
ea

n
Va

lu
e

of
 T

er
m

in
al

 B
ou

nd

0

0.5

1

1.5

2

Additive
MM-RRT*

(g) Mean value of terminal `

Value of Eigenvalue Bound
0 0.5 1 1.5 2 2.5 3

N
um

be
r o

f N
od

es
 in

 T
re

e

0

1000

2000

3000

4000

5000

6000

7000

Additive
MM-RRT*

(h) Eigenvalue ` at all nodes in the tree

Figure 3.10: (a) - (f) show the evolution of the maximum eigenvalue bound encoun-
tered, path duration and the sum of the bound as a function of the number of nodes
in the tree, over each of the 5 example paths from Figure 3.9, over 50 trials of our two
competing approaches. (g) shows the mean terminal bound of each example path for
the two approaches, and (h) shows a histogram of the bound’s value at all nodes in
the tree, averaged over 50 trials.

is introduced, the path, from B to C and finally to D, offers the shortest trajectory

exposed to the regions that have no GPS access (shown in Figure 3.8(b)). In other

60

words, we have SI(B,C) + SI(C,D) < SI(B,D) as SI(B,C) is equal to zero. All

nodes in the GPS zone of Figure 3.8 share the same primary cost, as well as the same

secondary cost from node B. Therefore, ties exist between these nodes. TI() can be

used to break these ties, resulting in the selection of node C as a parent node.

3.2.4 Experiments

We now describe a computational study performed to explore the effectiveness of

planning under uncertainty using MM-RRT*. Two-dimensional robot workspaces

are utilized to aid the visualization of the algorithm’s performance, but it is also

extensible to higher-dimensional systems. In our first example, we assume that a

robot is capable of translation in two degrees of freedom, moves at constant speed,

and is restricted to motion within the domain depicted in Figure 3.9. Throughout the

domain the robot receives odometry measurements in both translational degrees of

freedom. There are ten zones, illustrated in blue at the upper boundary of the domain,

where the robot can receive GPS measurements. The robot’s position estimate will

drift and the error covariance terms associated with position will grow unless it obtains

GPS measurements to curb error growth. All path planning problems explored in this

domain are rooted at xinit = (0.01, 0.99). Trees are constructed using two different

strategies and the results are compared for paths to five different goal regions. The

goal regions are indicated by the terminal locations of the paths depicted in Figure

3.9(a); they are numbered from one to five. Each goal is a circular region of radius

0.02 units.

As a baseline for comparison, the first strategy explored is using an additive cost

metric: the sum of the values of `, summed at every filter update along a path. This

metric, which penalizes the accumulation of uncertainty along a path, is intended to

offer a basis for comparison for the MM-RRT* algorithm. A representative example

61

(a) Additive Approach (b) MM-RRT*

Value of Eigenvalue Bound
0 10 20 30 40 50 60 70 80

N
um

be
r o

f N
od

es
 in

 T
re

e

0

200

400

600

800

Additive
MM-RRT*

(c) Eigenvalue ` at all nodes in the tree

Figure 3.11: A path planning example derived from a real-world building floorplan.
Plots (a) and (b) show trees of 10,000 nodes each, generated by our two competing
approaches using the same sequence of random samples. A histogram showing the
value of the eigenvalue bound across all nodes in the tree, averaged over 150 trials, is
shown in (c) for each approach.

of this approach is given in Figure 3.9(a). The second strategy explored is MM-

RRT*, using ¯̀ as the uncertainty cost metric, depicted in Figure 3.9(b). Fifty trials

are performed of both the additive approach and MM-RRT* using ` as the basis for

expressing uncertainty. In each trial, a tree of 50,000 nodes is constructed. Five

quantities are compared between the two competing methods: (1) the maximum

bound encountered over a path (Figure 3.10(a) and 4(b)), (2) path duration (Figure

62

Table 3.1: MM-RRT* vs. additive approach (aa) averaged over 150 trials (bound is
given in units of distance, squared)

Path To 1 To 2 To 3 To 4

Max Bound
Encountered

AA 52.837 69.947 67.907 50.386

MM-RRT* 37.177 50.916 51.064 34.739

Sum of
Bound

AA 2519 2926 2334 1288

MM-RRT* 2513 3275 2515 1354

Terminal
Bound

AA 52.837 69.947 67.907 50.386

MM-RRT* 37.124 43.805 29.905 23.777

Runtime
AA 0.947s

MM-RRT* 1.042s

3.10(c) and 4(d)), (3) the sum of the bound over each path (Figure 3.10(e) and 4(f)),

(4) the mean value of each example path’s terminal bound (Figure 3.10(g)), and

(5) the value of the bound at all nodes in the tree (Figure 3.10(h)). All quantities

shown in Figure 3.10 depict mean values averaged over 50 trials of each method. All

computational experiments are performed using a single core of a laptop computer’s

Intel i7-4710MQ 2.5 GHz quad-core processor, equipped with 16GB RAM and the 64-

bit Ubuntu 14.04 operating system. The RRT(*) C library provided by the authors

of [17] is adapted to implement the algorithms considered in this section.

In Figure 3.10(a) and 4(b), the maximum value of ` encountered over each of

the five highlighted paths is shown as a function of the number of nodes comprising the

tree, averaged over 50 trials. The plot begins where a feasible path has been returned

from all 50 trials. The mean maximum bound obtained over these five example paths

is reduced by 21.21%, 36.26%, 35.98%, 39.51% and 35.6% respectively by MM-RRT*

in comparison to the additive approach. Figure 3.10(b) demonstrates that MM-

RRT*’s paths exhibit asymptotic behavior, however, even when averaged over 50

63

trials, it is clear that paths undergo small fluctuations in cost as they approach their

respective asymptotes. Path duration is also shown as a function of the number of

nodes in Figures 4(c) and 4(d). Due to its priority on curbing uncertainty, the lengths

of the paths offered by MM-RRT* are greater than those offered by the additive

approach. The mean terminal bound of each path is depicted in Figure 3.10(g). MM-

RRT* reduces the value of each path’s terminal bound by 23.9%, 54.91%, 38.21%,

41.96% and 34.54% respectively in comparison to the additive approach. Figure

3.10(h), using a histogram, visualizes the values of the eigenvalue bound ¯̀ for all

nodes in the final tree, averaged over 50 trials. The min-max approach offers a

narrower spread of uncertainty among the nodes of its tree; 98.99% of the nodes of

MM-RRT* have an eigenvalue bound smaller than 1.2 units of distance, squared.

For the competing additive approach, only 70.31% of the tree’s nodes fall within this

threshold. The “fat tail” in the histogram for the additive approach, which contains

29.69% of the tree’s nodes, demonstrates that penalizing the sum of uncertainties will

often favor short paths that do not curb uncertainty to the same extent as a min-max

approach.

Further comparisons are made in a more complex scenario inspired by the

layout of a real-world office environment. A robot translates in a 78.1m by 63.3m

domain from xinit = (0.0, 0.0) shown in Figure 3.11. The same color spectrum used in

Figure 3.9 is applied here. There are five regions that have GPS availability, labeled

A through E. Four goal regions used in the planning problem are numbered from 1 to

4. One hundred fifty trials are performed in this scenario, and each trial grows a tree

comprised of 10,000 nodes. The same quantities compared in Figure 3.10 are also

compared in this case, and the computational results of the two competing planning

methods, over 150 trials, are shown in Table 3.1. The paths of the additive approach

only enter at most one GPS zone, while the paths produced by MM-RRT* enter at

64

least two GPS zones each. 85.31% of the tree nodes of MM-RRT* have an eigenvalue

bound smaller than 35m2. In the case of the additive approach, this number is only

51.33%.

A final comparison is presented in Figure 3.12, showing a three degree-of-

freedom Dubins vehicle planning over an experimentally derived map of our lab at

Stevens Institute, where it is capable of localizing only within a 1m visibility range

of the surrounding obstacles. Elsewhere, it must rely on odometry for navigation. In

this case, trees are grown that obey Dubins constraints for a 0.3m turning radius, and

a solution gradually evolves in real-time that limits the duration in which the vehicle

relies exclusively on odometry.

3.2.5 Conclusions

In this section, we have proposed a new path planning algorithm, MM-RRT*, that

curbs localization uncertainty by minimizing the maximum value of its uncertainty

metric encountered during the traversal of a path. This approach offers an alternative

to other sampling-based belief space planning algorithms that employ additive cost

representations of uncertainty. It also makes efficient use of a tree structure, with only

a single belief allowed per graph node. As demonstrated in our computational results,

an additive approach may often provide a suitable solution that curbs the growth

of localization error, but the inherent preference for shorter paths will occasionally

eliminate families of paths that are capable of further uncertainty reduction and

safer operation. This initial exploration of a min-max uncertainty cost function also

leaves room for future work: the approach may be combined with uncertainty-based

rejection sampling to reduce collision risk, and the prospect of establishing formal

optimality guarantees will be further explored.

65

(a) 1 sec. (b) 2 sec.

(c) 5 sec. (d) 10 sec.

Figure 3.12: A real-time path planning example using an experimentally derived map
from our lab, and a simulated ground robot with a three degree-of-freedom Dubins
model. The robot can localize within a meter of the obstacles, but must rely on
odometry elsewhere. The evolving solution and its tree is shown after 1, 2, 5, and 10
seconds of computation time.

66

3.3 Belief Roadmap Search

In this section, we give detailed characterization of what we term Belief Roadmap

Search (BRMS), the search of a roadmap in belief space for minimum-uncertainty so-

lutions that possess the optimal substructure property. However, we focus specifically

on methods that achieve this without the use of belief-stabilizing controllers, which

may not always be available in practice, especially under partial observability. Thus,

we build on the work of BRM and RBRM to further refine the requirements for op-

timal substructure, discuss practical performance issues of BRMS, and we propose a

new best-first implementation of BRMS, in contrast to the breadth-first implementa-

tions of BRM and RBRM, which yields significant improvement in the computational

cost of belief-space search by eliminating unnecessary node expansions.

3.3.1 Problem Definition

Since we are still solving the problem of planning under uncertainty in this section, the

problem definition, state estimation and uncertainty, and robot motion assumtions

are the same as the definitions in Section 3.2.1. For the purpose of clarity, please

refer to the previous section for the detailed descriptions.

3.3.1.1 Roadmap Search

We assume that a directed graph G = (V,E) is provided as input, where V is the node

set and E is the edge set. The robot’s start belief (x0, `0) and goal state xgoal define a

search query. A node n ∈ V is defined by n = (x, `, dist, parent, children, π), which

contains its state, eigenvalue bound, distance cost, parent, children and the path to

n from x0, which will be updated over the course of a search. These components can

also be presented as n.x, n.`, n.dist, n.parent, n.children and n.π respectively. A node nj

67

is accessible from node ni if edge eij ∈ E exists.

Now we define the cost function for the minimum goal-state uncertainty path

planning problem. We first define Gπ(`0), which is a composition of evaluations of

Equation (3.9) over a path π. Every evaluation represents a measurement update of

the EKF at each discrete-time instant:

Gπ(`0) := (`T◦`T−1 ◦ ... ◦ `1)(`0), (3.14)

where `0 is the initial uncertainty at x0. The optimal solution to a search query is a

path π∗ that has the lowest uncertainty at xgoal of all feasible paths that start from

(x0, `0):

π∗ = min
π∈Cfree

Gπ(`0), (3.15)

where Cfree denotes the states that are free of collision. To aid in expressing the cost

of various paths, we let c(ni) = Gπ0,i(`0) represent the error covariance eigenvalue

upper bound ni.` of node ni for a path π0,i that connects n0.x and ni.x. Then the

uncertainty at nj for a path from n0.x to nj.x while passing through ni.x is defined as

c(ni, nj).

Our cost function presents the problem that equally suitable paths may exist

when the robot is in an information-rich region where uncertainty is low everywhere.

Similarly to [21], we define that node na dominates node nb if:

na . nb ⇔ (na.` < (nb.` + ε)) ∧ (na.dist < nb.dist), (3.16)

where ε is a user-defined tolerance factor. In practice, we can set ε very small and

prune redundant paths efficiently. Given these assumptions, we will use `, the bound

68

on the maximum eigenvalue of P given in Equation (3.9), to plan minimum goal-state

uncertainty paths over roadmaps.

3.3.2 The Belief Roadmap Search

Here we give the details of the proposed search method, which we term the Belief

Roadmap Search (BRMS); its presentation includes implementation details omitted

from prior descriptions of minimum-uncertainty search methods (used with BRM

and RBRM), and differences in implementation. We use a queue to keep track of

nodes that have the potential to reduce a robot’s localization uncertainty. Unlike the

first-in, first-out approach employed by BRM and RBRM, we pop the node offering

the lowest cost among all nodes in the queue. By popping nodes in a best-first

manner, BRMS prioritizes the regions of the roadmap that expose a robot to high-

quality measurements. We have observed this node selection strategy to have two

key impacts: (1) it reduces the number of times that a node is placed back into

the queue after being popped, and (2) it curbs the growth of maximum uncertainty

that occurs over a path. The first aspect reduces search time, since unnecessary

repetitive node expansion and cost updates are avoided. The second aspect will

improve the quality of the path, since the robot spends less time in regions offering

poor-quality measurements. Evidence of these observations will be provided in the

following sections.

3.3.2.1 Algorithm Description

The proposed algorithm, BRMS, starts with a user-defined start belief (x0, `0) and

goal state xgoal. The input graph G = (V,E) is a probabilistic roadmap, and the

start node n0 and goal node ngoal are connected to the nearest nodes in the roadmap

if the connections are feasible (further sampling may be required if not).

69

Algorithm 3.5: The Belief Roadmap Search

Input: Graph G = (V,E), start node n0 with n0.x and n0.`, goal node ngoal
with ngoal.x

// Append G with nodes {n0, ngoal} and

// put the start node n0 into Queue

1 Queue← n0;
2 while |Queue| > 0 do

// find the node that has minimum cost

3 ni ← FindMinBound(Queue);
// delete node ni from Queue

4 Queue← Pop(Queue, ni);
// propagate if: #1. an edge eij exists

// between ni.x and nj.x, #2. nj.x is

// not in the path to ni.x
5 for {nj | eij ∈ E and nj.x 6∈ ni.π} do

// if nj.` can be reduced by passing ni,
// then perform a swap

6 if c(nj) > c(ni, nj) then
7 UpdateCost(ni, nj);
8 RecursivePropagate(nj);
9 Queue← Push(Queue, nj);

10 return ngoal.π

BRMS uses a queue to store all the nodes that have the potential to reduce

uncertainty, as in the BRM and RBRM algorithms. Since an optimal solution cannot

be guaranteed unless the graph is fully explored, the algorithm terminates only when

the queue is empty. Instead of popping nodes in a first-in-first-out manner, BRMS

pops the node that has the lowest cost in the queue (Algorithm 3.5, line 4). Then the

popped node ni expands the neighboring node nj, if the edge eij exists in the graph,

and nj is not already in the path to ni (line 5). This second condition disallows cycles

in the path. The algorithm only proceeds if the cost at nj can be improved in line

6. Lines 7 and 8 update the costs at node nj and all of its children. When node

nj is pushed into the queue, it replaces any instances of nj already in the queue. In

70

Algorithm 3.6: Cost Update Procedure

1 UpdateCost(ni, nj)
// propagate the new bound and distance cost

2 nj.` ← c(ni, nj);
3 nj.dist ← ni.dist +Distance(ni.x, nj.x);

// remove nj from its parent’s children set

4 Remove(nj.parent, nj);
5 nj.parent ← ni;
6 ni.children ← ni.children ∪ nj;
7 nj.π ← ni.π ∪ nj.x;
8 RecursivePropagate(np)
9 for nc ∈ np.children do

10 nc.` ← c(np, nc);
11 nc.dist ← nc.dist +Distance(np.x, nc.x);
12 RecursivePropagate(nc);

other words, there are no duplicated nodes in the queue at any time. When the queue

is empty, the algorithm terminates and returns a path to xgoal that starts from x0.

Details of specific functions invoked in the pseudocode of Algorithms 3.5 and 3.6 are

given below.

Find minimum bound : FindMinBound() returns the node with the minimum

bound among all nodes in Queue.

Pop a node: Unlike the Pop() function that deletes the first node of Queue in

[46] and [47], the function Pop() here deletes the input node ni from Queue.

Update node cost : The function UpdateCost(ni, nj) (Algorithm 3.6, line 1) is

called if node nj’s uncertainty is reduced by passing through ni. Accordingly, the

costs at node nj need to be updated. Distance() returns the length of edge eij (line

3). Node nj will be removed from its existing parent’s child list by calling function

Remove() (line 4). Then nj will be added to ni’s child list since ni becomes nj’s

new parent (lines 5 and 6). The path π to node nj, nj.π, is also updated by passing

through node ni (line 7).

71

(a) Using the maximum eigenvalue of P as a cost
function.

(b) Using an upper bound on the maximum
eigenvalue of P instead.

Figure 3.13: A search example in which minimum goal-state uncertainty for a point
robot is not achieved when we use the true maximum eigenvalue of the covariance
matrix P as the cost function. Two red beacons provide noisy range and bearing
measurements. The color of the workspace that varies from blue to red indicates the
quality of positioning measurements, which vary from low (blue) to high (red). The
radii at graph nodes represent the values of each metric.

Update child costs : RecursivePropagate() updates the costs of all the input

node’s children. Since its children may have other children, this is a recursive function

that will call itself and end when the child list of a node is fully explored.

3.3.3 Algorithm Analysis

3.3.3.1 Optimal Substructure

We present BRMS as a search that minimizes the goal-state uncertainty of a path

due to (1) the original application of BRM for this purpose [46], and (2) the proof

of optimal substructure established when the eigenvalue bound ` is used to represent

robot localization uncertainty [47]. Examples in this earlier work, in conjunction

with our example from Figure 3.13, demonstrate the failure of other representations

of localization uncertainty (such as the trace or true max. eigenvalue of P) to preserve

optimal substructure.

However, the allure remains of exploring other functions of `, beyond its value

72

(a) The Roadmap Used for This Example

(b) Optimal Path to Node 6 Using Sum of ` or
Min-Max ` Metric

(c) Optimal Path to Node 7 Using Sum of ` or
Min-Max ` Metric

(d) Optimal Path to Node 6 Using Minimum
Goal-State ` Metric

(e) Optimal Path to Node 7 Using Minimum
Goal-State ` Metric

Figure 3.14: A planning example that fails to achieve optimal substructure when the
sum of ` or max. value of ` across a path are used as cost metrics. A single-integrator
point robot traverses a bounded region containing an obstacle (red). The robot’s
position can be measured in blue “GPS” regions, but it relies on odometry elsewhere.
Robot localization uncertainty drops to the lowest level when the robot enters the
blue regions. All paths shown originate from node 1.

at the robot’s terminal state in the path, as potential cost metrics. Two of the most

obvious candidates are (1) the sum of ` along the states in a path (from which other

metrics, such as a robot’s mean uncertainty, can be derived), and (2) the maximum

value of ` along a path (we note that minimizing max. uncertainty was also propopsed

in the original presentation of BRM [46]). A key property required of a cost metric

in the proof of optimal substructure in [47] is monotonicity with respect to the initial

value of the cost metric at the beginning of a path.

We provide counterexamples in Figure 3.14 which show that unfortunately,

this type of monotonicity, and in turn, optimal substructure, are not possessed by

cost functions that sum ` nor that evalute the max. of ` over all the filter updates

along a path. In both cases, the optimal path from node 1 to node 6 is 1-3-5-6.

However, during the traversal of a very long edge from node 6 to node 7 without

73

access to positioning measurements, the robot’s uncertainty grows to such a large

extent that the most recent high-value measurement (attainable at node 4) matters

more than a previous history of high-quality measurements, and 1-2-4-6-7 provides

the optimal path from node 1 to node 7. Although path 1-3-5-6-7 offers a lower sum

of uncertainty and max. uncertainty going in to node 6, path 1-2-4-6-7 offers a lower

sum of uncertainty and max. uncertainty coming out at node 7. Monotonicity with

respect to the metrics’ initial values at node 6 is thus not preserved along the path

from 6 to 7, and the best paths to node 6 are not a subset of the best paths to node

7. However, this is not the case when using minimum goal-state uncertainty as a cost

metric, for which monotonicity and optimal substructure are preserved.

3.3.3.2 Algorithm Complexity

The complexity of the search procedure used by the BRM and RBRM algorithms is

given previously as O(bd) [46], where d is the worst-case search depth of a roadmap,

and b is the worst-case branching factor of the roadmap. In the worst case, the

for-loop in line 5 of Algorithm 3.5 may require b iterations, and its outer while-loop

(line 2) may continue further branching until nodes have been examined along the

greatest depths that can be searched in the roadmap. This worst-case exponential

complexity underscores the fact that nodes may be placed in and removed from the

queue multiple times, and edges potentially re-examined, until no further reductions

in uncertainty are possible. The step-by-step example given in Figure 3.15 illustrates

both of these events in the course of performing an uncertainty-optimal search.

However, the previously stated search complexity of O(bd) does not account

for the use of the RecursivePropagate() function (line 8 of Algorithm 3.5), which

is needed to propagate uncertainty to the descendants of a node when the search

reduces uncertainty at a parent node. Although this function is not explicity stated in

74

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.15: An example showing every step of a breadth-first search over a simple
roadmap, producing a single-source mininium goal-state uncertainty solution with
node 1 as the source node.

earlier presentations of the BRM and RBRM algorithms, this subroutine is required.

Without it, sub-optimal solutions may result - its importance is illustrated in the

example of Figure 3.15. In panel (f) of this example, node 4 is examined, and node 3

is identified as a candidate whose uncertainty will be reduced by re-routing through

node 4. This also has implications for node 5, which is currently the child of node 3

along the best-so-far path from the source node 1. The new uncertainty at node 3

must be propagated to node 5, otherwise node 5 will not be evaluated accurately in

future iterations of the search.

The worst-case complexity of the RecursivePropagate() function is O(n),

where n is the number of nodes in the roadmap. A node may have all other nodes in

the graph as descendants in a working mininum-uncertainty paths solution, and we

assume, as in [46], that the cost of uncertainty propagation across edges using Equa-

tion 3.9 can be amortized. This O(n) operation may be required in every iteration

of the for-loop of Algorithm 3.5, which brings the complexity of BRMS to O((bn)d).

Finally, there is a cost associated with our recommended best-first prioritization of

the search queue. This is a worst-case O(n) operation that occurs in each iteration

75

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.16: Search process of breadth-first search (cost metric ` is enlarged for
visualization).

of the while-loop of Algorithm 3.5. This brings the cost of BRMS to O((n + bn)d),

but since the O(bn) contribution of the for-loop is greater, we may continue to state

the algorithm’s worst-case complexity as O((bn)d). Hence, there is no difference in

the worst-case cost of a best-first vs. breadth-first prioritization of the queue.

3.3.3.3 Anti-Cycling Rule

As a practical implementation measure (enforced in line 5 of Algorithm 3.5), prevent-

ing the occurrence of cycles in a minimum-uncertainty paths solution improves the

BRMS algorithm’s computational tractability, while also ensuring that the solutions

produced are time-efficient. However, this anti-cycling rule, which is also enforced in

[46] and [47], also prevents some of the paths in a single-source solution from rep-

resenting true minimum goal-state uncertainty paths. This may be illustrated once

76

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.17: Search process of the proposed best-first BRMS method (cost metric `
is enlarged for visualization).

again using the example in Figure 3.15.

It is clear that the resulting path from node 1 (the source node) to node 2

in Figure 3.15 is not the solution offering minimum goal-state uncertainty. Instead,

path 1-3-5-4-2 would offer minimum goal-state uncertainty at node 2. However, en

route to producing minimum goal-state uncertainty solutions at all other nodes in the

roadmap, the current single-source solution originating at node 1, 1-2-4-5-3, produces

a sub-optimal solution at node 2. Due to the anti-cycling rule, in a solution with node

1 as the source node, either node 2 or node 3 must have node 1 as a parent, and the

order in which they are popped from the queue will determine which node is forced

to accept sub-optimal localization uncertainty.

3.3.3.4 Practical Implementation Notes

Despite the unimportance of queue prioritization to the worst-case computational

complexity of BRMS, we have observed this aspect of the algorithm to have an im-

portant practical impact on its efficiency and the quality of planning outcomes. Figure

77

3.16 gives a planning example with a breadth-first, first-in first-out handling of the

queue as in the original BRM and RBRM algorithms. In contrast, Figure 3.17 shows

the same example with our proposed best-first handling of the queue. We employ the

same assumptions as in Figure 3.14. A graph that is composed of 12 nodes is shown

in Figure 3.16(a), and the uncertainty at each node, represented by `, is colored ma-

genta and scaled up for visualization. Starting from node 1, every step of the search

is shown, for both queue prioritization schemes. As evident in panels 3.16 (f), (i) and

(l), the breadth-first search propagates through the graph in parallel on both sides

of the red obstacle. In contrast, the best-first search wraps around the lower half of

the obstacle, proceeding first through an area of high-quality robot positioning mea-

surements, before exploring other areas. Ultimately, the best-first BRMS terminates

in fewer iterations than its breadth-first counterpart, as fewer nodes are re-inserted

into the queue after their initial examination. Due to the anti-cycling rule, identical

uncertainty is not achieved at all nodes. Node 6 in Figure 3.16 has substantially

higher uncertainty than its counterpart in Figure 3.17, but nodes 9 and 10 in Figure

3.16 achieve lower uncertainty than their counterparts in Figure 3.17. These simple

examples illustrate the potential impact of the anti-cycling rule, although these con-

sequences lessen as denser roadmaps with a greater diversity of alternative routes are

available. In the following section, we will illustrate the same practical observations

about search efficiency over a larger class of examples.

3.3.3.5 Cost-to-go Heuristic

The A* cost-to-go heuristic can be applied to some planning problems to find a so-

lution faster. However, an admissible cost-to-go heuristic doesn’t typically apply to

the problem of planning under uncertainty - the evolution of ` over the duration of

a path, for example, is non-monotonic. A probabilistically conservative heuristic is

78

proposed in [31] by combining distance cost and uncertainty cost using a weighted

sum method. Extra care is needed when selecting the optimal weights for these two

costs that have different units. As a result, this method only finds optimal solutions

probabilistically. A similar approach that combines distance cost with uncertainty

cost is used in [29]. An A* search algorithm for planning under uncertainty is pro-

posed in [34], however, this approach imposes collision probability constraints, rather

than evaluating uncertainty in the cost function. Nonetheless, developing an effective

cost-to-go heuristic for use in BRMS is an interest for future work.

3.3.4 Experiments

We now describe a computational study performed to explore the effectiveness of plan-

ning under uncertainty using our proposed method. The examples explored include a

constant-velocity Dubins vehicle, a holonomic UAV with 10 degrees of freedom, and

a Clearpath Jackal ground robot.

3.3.4.1 Dubins Vehicle

We use the scenario presented in Figure 3.16 for our first Dubins vehicle example.

Again, an obstacle is colored red, a robot receives position measurements in blue re-

gions, and odometry measurements are available throughout the domain. The uncer-

tainty of robot position estimation drops to the lowest level after the robot enters blue

regions, while the robot’s position estimate will drift and the error covariance terms

associated with position will grow elsewhere. Planned paths are plotted in Figure

3.18 (a) for both the proposed BRMS method, and a standard breadth-first method,

hereafter abbreviated BFS. Though both methods return solutions offering minimum

uncertainty at the goal state, our proposed BRMS method achieves a higher-quality

path that curbs the growth of uncertainty throughout the entire route, rather than

79

(a)

(b) Upper (BFS) Path (c) Lower (BRMS) Path

Figure 3.18: Minimum uncertainty paths returned from BFS and BRMS methods are
shown in (a). The values of the max. eigenvalue of P and the bound ` are plotted as
a function of number of measurements over the path for both paths in (b) and (c).
The roadmap used to produce these paths contains 5000 nodes.

just at the goal state. Produced from a 5000-node probabilistic roadmap, the two

competing solutions now share fewer nodes in common than the earlier examples of

Section 3.3.3.

We next plan over a city map, which has a dimension of 1480 meters by 800

meters, for the same Dubins vehicle, shown in Figure 3.19. We assume the robot

is now equipped with a range sensor, which has a 30 meter range, for localization.

The continuous gray boundaries around the buildings indicate the regions where the

robot can perform localization using the rangefinder. The value of ` is scaled up 10

times for visualization of the error ellipses plotted. Outside of its visibility range to a

structure, the robot must rely on noisy odometry. As is shown in Figure 3.19(a), both

BRMS and BFS return solutions that have identical goal-state uncertainty. However,

80

(a)

(b)

Figure 3.19: Dubins paths planned by BFS and BRMS are shown in (a). The search
time and relative percentage improvement are plotted in (b) as a function of the
number of nodes in the graph, averaged over 50 trials. The mean value is plotted as
a solid line, and the shaded regions indicate the 10th-to-90th percentiles.

a large part of the path of the BFS method is exposed to regions where the robot

can only rely on odometry. The robot will encounter a higher average and maximum

uncertainty over the duration of the BFS path. In real-world applications, such a path

may result in localization failure. On the other hand, due to the priority on exploring

nodes offering high-quality sensing, the path of our proposed BRMS method stays in

the visibility regions as long as possible before reaching the goal.

All computational experiments were performed using a single core of a laptop’s

81

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of nodes

13

13.5

14

14.5

15

15.5

G
oa

l B
ou

nd
BFS
BRMS

(a) Bound at Goal Location

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of nodes

10

15

20

25

30

M
ax

 B
ou

nd
 O

ve
r P

at
h BFS

BRMS

(b) Max Bound Over Path

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of nodes

0

2

4

6

8

M
ea

n
Bo

un
d

O
ve

r P
at

h BFS
BRMS

(c) Mean Bound Over Path

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of nodes

1800

2000

2200

2400

2600

2800

Pa
th

 D
ur

at
io

n

BFS
BRMS

(d) Path Length

0 2 4 6 8 10 12 14 16 18 20
Put Into Queue Times

0

500

1000

1500

N
um

be
r o

f N
od

es

BFS
BRMS

(e) Times a Node is Inserted into Queue

0 1 2 3 4 5 6 7 8 9 10
Start Location

0

2

4

6

8

10

12
Se

ar
ch

 T
im

e
(s

ec
on

ds
)

45.32%
44.36% 45.51% 42% 41.24%

48.22% 49.53% 47.97% 47.76% 44.8%

BFS
BRMS

(f) Search Time for 10 Different Start Loca-
tions

Figure 3.20: Subfigures (a)-(d) show the evolution of the goal-state `, the maximum
` encountered, the mean ` and the path length (in meters) as a function of the
number of nodes in the graph, for the specific city map Dubins vehicle planning
query illustrated in Figure 3.19. The histogram in (e) shows the number of times
that nodes are inserted into the queue for both methods. Search time for 10 other
randomly chosen start locations is shown in (f). All comparisons are averaged over
50 trials.

Intel i7 2.5 GHz quad-core processor, equipped with 16GB RAM and the 64-bit

Ubuntu 14.04 operating system. A comparison of search time for the city map example

is presented in Figure 3.19 (b). BRMS improves the computation time by about 47%

when we have more than 5,000 nodes in the graph. Figure 3.20 (a)-(d) shows the

evolution of the goal-state uncertainty, the max. uncertainty encountered, the mean

uncertainty and the path length as a function of the number of nodes in the graph.

82

Though the BFS method achieves the same optimal value of ` at the goal location,

our BRMS method outperforms it in computational efficiency and in max. and mean

uncertainty achieved along a path. We note however that the length of the path

offered by our method is greater than the one offered by the BFS approach. Figure

3.20(e) confirms that BRMS reduces the number of times that a node is inserted into

the queue. In order to verify our method’s effectiveness in other start locations, we

randomly select 10 different locations in the map and plot their corresponding search

times in Figure 3.20(f). Search time improvements are listed on top of each bar.

(a) (b)

Figure 3.21: UAV planning example, in which paths returned from BFS and BRMS
are colored red and green respectively. The roadmap used to produce these paths
contains 5000 nodes.

3.3.4.2 UAV Simulation

We next explore a kinodynamic UAV motion planning problem, in which a quadrotor

model [124], which is 10-dimensional, is linearized about the aircraft’s hover point.

Its state can be expressed as x = (p, v, r, w)T , where p and v are three-dimensional

position and velocity, r and w are two-dimensional orientation and angular velocity,

and yaw and its derivative are constrained to zero after linearization. We also assume

83

the UAV is equipped with a planar rangefinder for localization purposes. The paths

obtained from BFS and BRMS are plotted in Figure 3.21. We note that the paths from

both methods share the same final portion. However, the BFS path (red) traverses

a large open area, which results in greater max. uncertainty at the goal state. The

BRMS path (green) is longer, but stays close to the buildings at all times to localize.

A similar search time improvement to that of the Dubins example is also achieved

here.

Start
1

Goal
1

Start
2

Goal
2

Start
3

Goal
3

Figure 3.22: BRMS-derived trajectories executed using a Clearpath Jackal ground
robot in an indoor office environment. The continuous gray line around obstacles
indicates a visibility boundary, within which obstacles can be observed for localiza-
tion. Three paths with different start and goal locations, which are derived from our
proposed method, are colored blue, green and red. The roadmap used to produce
these paths contains 3000 nodes.

84

3.3.4.3 Experimental Results with Robot Hardware

Finally, we implement the proposed algorithm on a mobile robot, the Clearpath

Jackal, with motion planning using PRM subject to Dubins constraints. Our aim is

to examine the effectiveness of the proposed method for a real-world mobile robot. A

Hokuyo UTM-30LX laser scanner, which has a 30 meter range and 270° field of view,

is mounted on the top of the robot. In order to visualize the benefits of our method

during the mission, Adaptive Monte Carlo Localization (AMCL) [125], which uses a

particle filter to track the pose of a robot, is employed. We discard laser range returns

that are more than 1 m away from robot, allowing a small-scale indoor environment

to produce varied localization outcomes. When the robot is more than 1 m away from

features in the environment, AMCL will be forced to rely on noisy wheel odometry

only. This “dead-reckoning region” is outlined by a gray line. The uncertainty of the

robot, derived from the output of AMCL, is represented using 95% confidence ellipses

along the plotted trajectories.

Representative robot execution traces of trajectories from different start and

goal locations are illustrated in Figure 3.22. Note that the uncertainty grows dramat-

ically when only odometry information, which is noisy and inaccurate, is available for

AMCL. As mentioned in the previous section, the paths derived from our method stay

in good measurement regions as long as possible before reaching the goal locations.

We also note that sometimes, in the course of performing trials, AMCL fails to local-

ize the robot after traversing without an obstacle detection for some amount of time.

Though BRMS paths tend to be longer, they also tend to avoid localization-poor

regions due to the prioritization of nodes offering high-quality measurements.

85

3.3.5 Conclusions

In this section, we have explored theoretical and practical implementation issues of

optimal Belief Roadmap Search, proposing our own variant of the technique that plans

minimum goal-state uncertainty paths using an upper bound on the EKF covariance

max. eigenvalue (where we have shown mean and min-max functions of this metric

to fail), implements best-first prioritization of its search queue, and, for the first time,

formally incorporates the recursive propagation of uncertainty across the descendants

of a node, an essential step for correct and consistent algorithm performance. We have

established the exponential worst-case complexity of the search, while at the same

time demonstrating the practical benefits achieved from a best-first formulation of

the search - a speed-up due to reduced re-insertion of nodes into the queue, and

high-quality paths that tend to achieve lower mean and max. uncertainty over the

duration of a path.

86

Chapter 4

Lightweight Lidar Odometry

4.1 Introduction

A fundamental question encountered in autonomous navigation is “where am I”.

Localization is a key prerequisite for executing most missions. The relative or absolute

position of a robot needs to be obtained from measurements that can be internal or

external. Given the measurements, the robot needs to know its position as accurately

as possible. We pursue reliable, real-time six degree-of-freedom pose estimation for

ground vehicles equipped with 3D lidar, in a manner that is amenable to efficient

implementation on a small-scale embedded system. Such a task is non-trivial for

several reasons. Many unmanned ground vehicles (UGVs) do not have suspensions

or powerful computational units due to their limited size. Non-smooth motion is

frequently encountered by small UGVs driving on variable terrain, and as a result,

the acquired data is often distorted. Reliable feature correspondences are also hard

to find between two consecutive scans due to large motions with limited overlap.

Besides that, the large quantities of points received from a 3D lidar poses a challenge

to real-time processing using limited on-board computational resources.

When we implement LOAM [78, 79] for our tasks, we can obtain low-drift mo-

tion estimation when a UGV is operated with smooth motion amidst stable features,

and supported by sufficient computational resources. However, the performance of

LOAM deteriorates when resources are limited. Due to the need to compute the

roughness of every point in a dense 3D point cloud, the update frequency of feature

extraction on a lightweight embedded system cannot always keep up with the sensor

87

update frequency. Operation of UGVs in noisy environments also poses challenges for

LOAM. Since the mounting position of a lidar is often close to the ground on a small

UGV, sensor noise from the ground may be a constant presence. For example, range

returns from grass may result in high roughness values. As a consequence, unreliable

edge features may be extracted from these points. Similarly, edge or planar features

may also be extracted from points returned from tree leaves. Such features are usually

not reliable for scan-matching, as the same grass blade or leaf may not be seen in two

consecutive scans. Using these features may lead to inaccurate registration and large

drift.

In this chapter, we describe a lightweight and ground-optimized LOAM (LeGO-

LOAM) for pose estimation of UGVs in complex environments with variable ter-

rain. LeGO-LOAM is lightweight, as real-time pose estimation and mapping can be

achieved on an embedded system. Point cloud segmentation is performed to discard

points that may represent unreliable features after ground separation. LeGO-LOAM

is also ground-optimized, as we introduce a two-step optimization for pose estima-

tion. Planar features extracted from the ground are used to obtain [tz, θroll, θpitch]

during the first step. In the second step, the rest of the transformation [tx, ty, θyaw] is

obtained by matching edge features extracted from the segmented point cloud. We

also integrate the ability to perform loop closures to correct motion estimation drift.

4.2 LeGO-LOAM

An overview of the proposed framework is shown in Figure 4.1. The system receives

input from a 3D lidar and outputs 6 DOF pose estimation. The overall system is

divided into five modules. The first, segmentation, takes a single scan’s point cloud

and projects it onto a range image for segmentation. The segmented point cloud

88

Figure 4.1: System overview of LeGO-LOAM.

(a) Stevens gym (b) Raw point cloud (c) Ground points

Figure 4.2: Ground separation for a scan in urban environment. The original point
cloud from VLP-16 is shown in (b). The separated ground points are shown in (c).

is then sent to the feature extraction module. Then, lidar odometry uses features

extracted from the previous module to find the transformation relating consecutive

scans. The features are further processed in lidar mapping, which registers them to

a global point cloud map. At last, the transform integration module fuses the pose

estimation results from lidar odometry and lidar mapping and outputs the final pose

estimate. The proposed system seeks improved efficiency and accuracy for ground

vehicles, with respect to the original, generalized LOAM framework of [78] and [79].

The details of these modules are introduced below.

89

(a) Raw point cloud (b) Segmented point cloud

Figure 4.3: Point cloud segmentation. (b) shows the original point cloud from VLP-
16. The segmented point cloud is shown in (c). Each color represents a segment.

4.2.1 Segmentation

Let Pt = {p1, p2, ..., pn} be the point cloud acquired at time t, where pi is a point in

Pt. Pt is first projected onto a range image. The resolution of the projected range

image is 1800 by 16, since the VLP-16 has horizontal and vertical angular resolution

of 0.2◦ and 2◦ respectively. Each valid point pi in Pt is now represented by a unique

pixel in the range image. The range value ri that is associated with pi represents

the Euclidean distance from the corresponding point pi to the sensor. Since sloped

terrain is common in many environments, we do not assume the ground is flat. A

column-wise evaluation of the range image, which can be viewed as ground plane

estimation [126], is conducted for ground point extraction before segmentation. After

this process, points that may represent the ground are labeled as ground points and

not used for segmentation.

Then, an image-based segmentation method [127] is applied to the range im-

age to group points into many clusters. Points from the same cluster are assigned

a unique label. Note that the ground points are a special type of cluster. Applying

segmentation to the point cloud can improve processing efficiency and feature extrac-

90

(a) Raw point cloud (b) Segmented point cloud

Figure 4.4: Point cloud segmentation results in a noisy environment. The original
point cloud is shown in (a). In (b), the red points are labeled as ground points. The
rest of the points are the points that remain after segmentation.

tion accuracy. Assuming a robot operates in a noisy environment, small objects, e.g.,

tree leaves, may form trivial and unreliable features, as the same leaf is unlikely to be

seen in two consecutive scans. In order to perform fast and reliable feature extraction

using the segmented point cloud, we omit the clusters that have fewer than 30 points.

A visualization of a point cloud before and after segmentation is shown in Figure 4.3.

After this process, only the points that may represent large objects, e.g., tree

trunks, and ground points are preserved for further processing. At the same time,

only these points are saved in the range image. The benefits of performing point

cloud segmentation for a scan that is captured in a noisy environment is shown in

Figure 4.4. The original point cloud includes many points, which are obtained from

surrounding vegetation that may yield unreliable features. At last, we also obtain

three properties for each point: (1) its label as a ground point or segmented point,

(2) its column and row index in the range image, and (3) its range value. These

properties will be utilized in the following modules.

91

(a) Segmented point cloud (b) Feature sets Fe and Fp (c) Features Fe and Fp

Figure 4.5: Feature extraction on segmented point cloud. In (b), the green and pink
points represent edge and planar features in Fe and Fp respectively. In (c), blue and
yellow points indicate edge and planar features in Fe and Fp.

4.2.2 Feature Extraction

The feature extraction process is similar to the method used in [79]. However, instead

of extracting features from raw point clouds, we extract features from ground points

and segmented points. Let S be the set of continuous points of pi from the same row

of the range image. Half of the points in S are on either side of pi. We set |S| to 10

for all tests. Using the range values computed during segmentation, we can evaluate

the roughness of point pi in S,

c =
1

|S| · ‖ri‖
‖ Σ

j∈S,j 6=i
(rj − ri)‖. (4.1)

To evenly extract features from all directions, we divide the range image hor-

izontally into several equal sub-images. Then we sort the points in each row of the

sub-image based on their roughness values c. Similar to LOAM, we use a threshold

cth to distinguish different types of features. We call the points with c larger than cth

edge features, and the points with c smaller than cth planar features. Then nFe edge

feature points with the maximum c, which do not belong to the ground, are selected

from each row in the sub-image. nFp planar feature points with the minimum c, which

92

Figure 4.6: Two-step optimization for the lidar odometry module. [tz, θroll, θpitch]
is first obtained by matching the planar features extracted from ground points.
[tx, ty, θyaw] are then estimated using the edge features extracted from segmented
points while applying [tz, θroll, θpitch] as constraints.

may be labeled as either ground or segmented points, are selected in the same way.

Let Fe and Fp be the set of all edge and planar features from all sub-images. These

features are visualized in Figure 4.5(b). We then extract nFe edge features with the

maximum c, which do not belong to the ground, from each row in the sub-image.

Similarly, we extract nFp planar features with the minimum c, which must be ground

points, from each row in the sub-image. Let Fe and Fp be the set of all edge and

planar features from this process. Here, we have Fe ⊂ Fe and Fp ⊂ Fp. Features in Fe

and Fp are shown in Figure 4.5(c). We divide the 360◦ range image into 6 sub-images.

Each sub-image has a resolution of 300 by 16. nFe , nFp , nFe and nFp are chosen to be

2, 4, 40 and 80 respectively.

4.2.3 Lidar Odometry

The lidar odometry module estimates the sensor motion between two consecutive

scans. The transformation between two scans is found by performing point-to-edge

and point-to-plane scan-matching. In other words, we need to find the corresponding

features for points in F t
e and F t

p from feature sets Ft−1
e and Ft−1

p of the previous scan.

For the sake of brevity, the detailed procedures of finding these correspondences can

93

be found in [79]. However, we note that two changes can be made to improve feature

matching accuracy and efficiency:

4.2.3.1 Label Matching

Since each feature in F t
e and F t

p is encoded with its label after segmentation, we only

find correspondences that have the same label from Ft−1
e and Ft−1

p . For planar features

in F t
p, only points that are labeled as ground points in Ft−1

p are used for finding a

planar patch as the correspondence. For an edge feature in F t
e , its corresponding

edge line is found in the Ft−1
e from segmented clusters. Finding the correspondences

in this way can help improve the matching accuracy. In other words, the matching

correspondences for the same object are more likely to be found between two scans.

This process also narrows down the potential candidates for correspondences.

4.2.3.2 Two-step L-M Optimization

In [79], a series of nonlinear expressions for the distances between the edge and planar

feature points from the current scan and their correspondences from the previous scan

are compiled into a single comprehensive distance vector. The Levenberg-Marquardt

(L-M) method is applied to find the minimum-distance transformation between the

two consecutive scans.

We introduce a two-step L-M optimization method here. The optimal trans-

formation T is found in two steps: (1) [tz, θroll, θpitch] are estimated by matching the

planar features in F t
p and their correspondences in Ft−1

p , (2) the remaining [tx, ty, θyaw]

are then estimated using the edge features in F t
e and their correspondences in Ft−1

e

while using [tz, θroll, θpitch] as constraints. It should be noted that though [tx, ty, θyaw]

can also be obtained from the first optimization step, they are less accurate and not

used for the second step. Finally, the 6D transformation between two consecutive

94

(a) Map Q
t−1

(b) Feature sets Ft
e and Ft

p

Figure 4.7: The lidar mapping module matches features in {Fte, Ftp} to a surrounding

point cloud map Q
t−1

to obtain the pose transformation.

scans is found by fusing [tz, θroll, θpitch] and [tx, ty, θyaw]. By using the proposed two-

step optimization method, we observe that similar accuracy can be achieved while

computation time is reduced by about 35% (Table 4.3).

4.2.4 Lidar Mapping

The lidar mapping module matches features in {Fte, Ftp} to a surrounding point cloud

map Q
t−1

to further refine the pose transformation, but runs at a lower frequency.

Then the L-M method is used here again to obtain the final transformation. We refer

the reader to the description from [79] for the detailed matching and optimization

procedure.

The main difference in LeGO-LOAM is how the final point cloud map is stored.

Instead of saving a single point cloud map, we save each individual feature set {Fte,

Ftp}. Let M t−1 = {{F1
e,F1

p}, ..., {Ft−1
e ,Ft−1

p }} be the set that saves all previous feature

sets. Each feature set in M t−1 is also associated with the pose of the sensor when the

scan is taken. Then Q
t−1

can be obtained from M t−1 in two ways.

In the first approach, Q
t−1

is obtained by choosing the feature sets that are in

95

the field of view of the sensor. For simplicity, we can choose the feature sets whose

sensor poses are within 100m of the current position of the sensor. The chosen feature

sets are then transformed and fused into a single surrounding map Q
t−1

. This map

selection technique is similar to the method used in [79].

We can also integrate pose-graph SLAM into LeGO-LOAM. The sensor pose

of each feature set can be modeled as a node in a pose graph. Feature set {Fte,Ftp}

can be viewed as a sensor measurement of this node. Since the pose estimation drift

of the lidar mapping module is very low, we can assume that there is no drift over

a short period of time. In this way, Q
t−1

can be formed by choosing a recent group

of feature sets, i.e., Q
t−1

= {{Ft−ke ,Ft−kp }, ..., {Ft−1
e ,Ft−1

p }}, where k defines the size of

Q
t−1

. Then, spatial constraints between a new node and the chosen nodes in Q
t−1

can

be added using the transformations obtained after L-M optimization. We can further

eliminate drift for this module by performing loop closure detection. In this case,

new constraints are added if a match is found between the current feature set and a

previous feature set using ICP. The estimated pose of the sensor is then updated by

sending the pose graph to an optimization system such as [128]. Note that only the

experiment in Section 4.3.4 uses this technique to create its surrounding map.

4.3 Experiments

We now describe a series of experiments to qualitatively and quantitatively analyze

two competing methods, LOAM and LeGO-LOAM, on two hardware arrangements,

a Jetson TX2 with a Cortex-A57, and a laptop with an i7-4710MQ. Both algorithms

are implemented in C++ and executed using the robot operating system (ROS)[129]

in Ubuntu Linux1.

1The code for LeGO-LOAM is available at https://github.com/RobustFieldAutonomyLab/

LeGO-LOAM

https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM

96

Figure 4.8: Edge and planar features obtained from two different lidar odometry and
mapping frameworks in an outdoor environment covered by vegetation. Edge and
planar features are colored green and pink, respectively. The features obtained from
LOAM are shown in (b) and (c). The features obtained from LeGO-LOAM are shown
in (d) and (e). Label (i) indicates a tree, (ii) indicates a stone wall, and (iii) indicates
the robot.

4.3.1 Small-Scale UGV Test

We manually drive the robot in an outdoor environment that is covered with vegeta-

tion. We first show qualitative comparisons of feature extraction in this environment.

Edge and planar features that are extracted from the same scan using both methods

are shown in Figure 4.8. These features correspond to the {Fte,Ftp} that are sent to

the lidar mapping module in Section 4.2.4. As is shown in Figure 4.8(d), the number

of features from LeGO-LOAM is reduced greatly after point cloud segmentation. The

majority of points that are returned from tree leaves are discarded, as they are not

97

(a) LOAM (b) LeGO-LOAM

Figure 4.9: Maps from both LOAM and LeGO-LOAM over the terrain shown in
Figure 4.8(a). The trees marked by white arrows in (a) represent the same tree.

stable features across multiple scans. On the other hand, since the points returned

from grass are also very noisy, large roughness values will be derived after evaluation.

As a result, edge features are unavoidably extracted from these points using the orig-

inal LOAM. As is shown in Figure 4.8(c), edge features that are extracted from the

ground are often unreliable.

Though we can change the roughness threshold cth for extracting edge and

planar features in LOAM to reduce the number of features and filter out unstable

features from grass and leaves, we encounter worse results after applying such changes.

For example, we can increase cth to extract more stable edge features from an envi-

ronment, but this change may result in an insufficient number of useful edge features

if the robot enters a relatively clean environment. Similarly, decreasing cth will also

give rise to a lack of useful planar features when the robot moves from a clean envi-

ronment to a noisy environment. Throughout all experiments here, we use the same

cth for both LOAM and LeGO-LOAM.

Now we compare the mapping results from both methods over the test envi-

ronment. To mimic a challenging potential UGV operational scenario, we perform

98

(a) Google satellite image

(b) LOAM on Jetson (c) LeGO-LOAM on Jetson

(d) LOAM on i7 (e) LeGO-LOAM on i7

Figure 4.10: Final point cloud maps of each method on rough terrain.

a series of aggressive yaw maneuvers. Note that both methods are fed an identical

initial translational and rotational guess, which is obtained from an IMU, throughout

all experiments. The resulting point cloud map after 60 seconds of operation is shown

in Figure 4.9. Due to erroneous feature associations caused by unstable features, the

map from LOAM diverges twice during operation. The three tree trunks that are

highlighted by white arrows in Figure 4.9(a) represent the same tree in reality.

The mapping results of each method on different hardwares are shown in Figure

4.10. The mapped area is mostly covered in vegetation. When running LOAM on

Jetson, it is not able to run in real-time due to its demand for processing large

99

amounts of features. Thus the estimated pose diverged many times during the whole

mapping process. When running LOAM on a laptop that is equipped with an i7

CPU, it performs better as more computational resources are available. However, it

still suffers from wrong feature association in noisy environments. As is shown on

Figure 4.10, a wall on the right side of the figure is registered as multiple objects

by LOAM. On the other hand, LeGO-LOAM achieves consistent performance when

running on both platforms. A visualization of the full mapping process for both

odometry methods can be found in the video attachment2.

4.3.2 Large-Scale UGV Tests

We next perform quantitative comparisons of LOAM and LeGO-LOAM over three

large-scale datasets, which will be referred to as experiments 1, 2 and 3. The first

two were collected on the Stevens Institute of Technology campus, with numerous

buildings, trees, roads and sidewalks. These experiments and their environment are

illustrated in Figure 4.11(a). Experiment 3 spans a forested hiking trail, which fea-

tures trees, asphalt roads and trail paths covered by grass and soil. The environment

in which experiment 3 was performed is shown in Figure 4.13. The details of each

experiment are listed in Table 4.1. To perform a fair comparison, all of the perfor-

mance and accuracy results shown for each experiment are averaged over 10 trials of

real-time playback of each dataset.

4.3.2.1 Experiment 1

The first experiment is designed to show that both LOAM and LeGO-LOAM can

achieve low-drift pose estimation in an urban environment with smooth motion. We

avoid aggressive yaw maneuvers, and we avoid driving the robot through sparse areas

2https://youtu.be/O3tz_ftHV48

https://youtu.be/O3tz_ftHV48

100

Table 4.1: Large-Scale outdoor datasets

Experiment
Scan

Number
Elevation

Change (m)
Trajectory

Length (km)

1 8077 11 1.09
2 8946 11 1.24
3 20834 19 2.71

(a) Satellite image (b) Experiment 1 (c) Experiment 2

Figure 4.11: LeGO-LOAM maps from experiments 1 and 2. The color variation in
(c) indicates true elevation change. Since the robot’s initial position in experiment 1
is on a slope, the color variation in (b) does not represent true elevation change.

where only a few stable features can be acquired. The robot is operated on smooth

roads during the whole data logging process. The initial position of the robot, which

is marked in Figure 4.11(b), is on a slope. The robot returns to the same position

after 807 seconds of travel with an average speed of 1.35m/s.

To evaluate the pose estimation accuracy of both methods, we compare the

translational and rotational difference between the final pose and the initial pose.

Here, the initial pose is defined as [0, 0, 0, 0, 0, 0] through all experiments. As is shown

in Table 4.5, both LOAM and LeGO-LOAM achieve similar low-drift pose estimation

over two different hardware arrangements. The final map from LeGO-LOAM, when

run on a Jetson, is shown in Figure 4.11(b).

101

(a) Satellite image (b) LOAM (c) LeGO-LOAM

(d) LOAM (e) LeGO-LOAM

Figure 4.12: A scenario where LOAM fails over a sidewalk crossing the Stevens cam-
pus in experiment 2 (the leftmost sidewalk in image (a) above). One end of the
sidewalk is supported by features from a nearby building. The other end of the side-
walk is surrounded primarily by noisy objects, i.e., grass and trees. Without point
cloud segmentation, unreliable edge and planar features will be extracted from such
objects. Images (b) and (d) show that LOAM fails after passing over the sidewalk.

4.3.2.2 Experiment 2

Though experiment 2 is carried out in the same environment as experiment 1, its tra-

jectory is slightly different, driving across a sidewalk that is shown in Figure 4.12(a).

This sidewalk represents an environment where LOAM may often fail. A wall and

pillars are on one end of the sidewalk - the edge and planar features that are ex-

tracted from these structures are stable. The other end of the sidewalk is an open

area covered with noisy objects, i.e., grass and trees, which will result in unreliable

102

Figure 4.13: Experiment 3 LeGO-LOAM mapping result.

feature extraction. As a result, LOAM’s pose estimation diverges after driving over

this sidewalk (Figure 4.12(b) and (d)). LeGO-LOAM has no such problem as: 1) no

edge features are extracted from ground that is covered by grass, and 2) noisy sensor

readings from tree leaves are filtered out after segmentation. An accuracy comparison

of both methods is shown in Table 4.5. In this experiment, LeGO-LOAM achieves

higher accuracy than LOAM by an order of magnitude.

4.3.2.3 Experiment 3

The dataset for experiment 3 was logged from a forested hiking trail, where the

UGV was driven at an average speed of 1.3m/s. The robot returns to the initial

position after 35 minutes of driving. The elevation change in this environment is

103

Table 4.2: Average feature content of a scan after feature extraction

S
ce

n
a
ri

o Edge
Features Fe

Planar
Features Fp

Edge
Features Fe

Planar
Features Fp

LOAM
LeGO-
LOAM

LOAM
LeGO-
LOAM

LOAM
LeGO-
LOAM

LOAM
LeGO-
LOAM

1 157 102 323 152 878 253 4849 1319
2 145 102 331 154 798 254 4677 1227
3 174 101 172 103 819 163 6056 1146

about 19 meters. The UGV is driven on three road surfaces: dirt-covered trails,

asphalt, and ground covered by grass. Representative images of such surfacess are

shown respectively at bottom of Figure 4.13. Trees or bushes are present on at least

one side of the road at all times.

We first test LOAM’s accuracy in this environment. The resulting maps diverge

at various locations on both computers used. The final translational and rotational

error with respect to the UGV’s initial position are 69.40m and 27.38◦ on the Jetson,

and 62.11m and 8.50◦ on the laptop. The resulting trajectories from 10 trials on both

hardware arrangements are shown in Figure 4.14(a) and (b).

When LeGO-LOAM is applied to this dataset, the final relative translational

and rotational errors are 13.93m and 7.73◦ on the Jetson, and 14.87m and 7.96◦ on

the laptop. The final point cloud map from LeGO-LOAM on the Jetson is shown in

Figure 4.13 overlaid atop a satellite image. A local map, which is enlarged at the

center of Figure 4.13, shows that the point cloud map from LeGO-LOAM matches

well with three trees visible in the open. High consistency is shown among all paths

obtained from LeGO-LOAM on both computers. Figure 4.14(c) and (d) show ten

trials run on each computer.

104

(a) LOAM on Jetson (b) LOAM on laptop

(c) LeGO-LOAM on Jetson (d) LeGO-LOAM on laptop

Figure 4.14: Paths produced by LOAM and LeGO-LOAM across 10 trials, and 2
computers, with the experiment 3 dataset.

4.3.3 Benchmarking Results

4.3.3.1 Feature number comparison

We show a comparison of feature extraction across both methods in Table 4.2. The

feature content of each scan is averaged over 10 trials for each dataset. After point

cloud segmentation, the number of features that need to be processed by LeGO-

LOAM is reduced by at least 29%, 40%, 68% and 72% for sets Fe, Fp, Fe and Fp

respectively.

105

Table 4.3: Iteration number comparison for LeGO-LOAM

Scenario
Original Opt. Two-step Opt.

Iter. Num. Time
Step 1

Iter. Num
Step 2

Iter. Num
J
et

so
n 1 16.6 34.5 1.9 17.5

2 15.7 32.9 1.7 16.7
3 20.0 27.7 4.7 18.9

i7

1 17.3 13.1 1.8 18.2
2 16.5 12.3 1.6 17.5
3 20.5 10.4 4.7 19.8

4.3.3.2 Iteration number comparison

The results of applying the proposed two-step L-M optimization method are shown

in Table 4.3. We first apply the original L-M optimization with LeGO-LOAM, which

means that we minimize the distance function obtained from edge and planar features

together. Then we apply the two-step L-M optimization for LeGO-LOAM: 1) planar

features in Fp are used to obtain [tz, θroll, θpitch] and 2) edge features in Fe are used to

obtain [tx, ty, θyaw]. The average iteration number when the L-M method terminates

after processing one scan is logged for comparison. When two-step optimization

is used, the step-1 optimization is finished in 2 iterations in experiments 1 and 2.

Though the iteration count of the step-2 optimization is similar to the quantity of

the original L-M method, fewer features are processed. As a result, the runtime for

lidar odometry is reduced by 34% to 48% after using two-step L-M optimization. The

runtime for two-step optimization is shown in Table 4.4.

4.3.3.3 Runtime comparison

The runtime for each module of LOAM and LeGO-LOAM over two computers is

shown in Table 4.4. Using the proposed framework, the runtime of the feature extrac-

106

Table 4.4: Runtime of modules for processing one scan (ms)

Scenario Segmentation Extraction Odometry Mapping

LOAM
LeGO-
LOAM LOAM

LeGO-
LOAM LOAM

LeGO-
LOAM LOAM

LeGO-
LOAM

J
et

so
n 1 N/A 29.3 105.1 9.1 133.4 19.3 702.3 266.7

2 N/A 29.9 106.7 9.9 124.5 18.6 793.6 278.2
3 N/A 36.8 104.6 6.1 122.1 18.1 850.9 253.3

i7

1 N/A 16.7 50.4 4.0 69.8 6.8 289.4 108.2
2 N/A 17.0 49.3 4.4 66.5 6.5 330.5 116.7
3 N/A 20.0 48.5 2.3 63.0 6.1 344.9 101.7

Table 4.5: Relative pose estimation error when returning to start

Scenario Method Roll Pitch Yaw
Total
Rot.(◦) X Y Z

Total
Trans.(m)

J
et

so
n

1 LOAM 1.16 2.63 2.5 3.81 1.33 2.91 0.43 3.23
LeGO-LOAM 0.46 0.91 1.98 2.23 0.12 0.07 1.26 1.27

2 LOAM 7.05 5.06 9.4 12.80 7.71 6.31 4.32 10.86
LeGO-LOAM 0.61 0.70 0.32 0.99 0.04 0.10 0.34 0.36

3 LOAM 7.55 3.20 26.12 27.38 34.61 56.19 21.46 69.40
LeGO-LOAM 4.62 5.45 2.95 7.73 5.35 7.95 10.11 13.93

i7

1 LOAM 0.28 1.98 1.74 2.65 0.39 0.03 0.21 0.44
LeGO-LOAM 0.33 0.17 2.06 2.09 0.03 0.02 0.22 0.22

2 LOAM 21.49 4.86 4.34 22.46 1.39 2.59 11.63 11.99
LeGO-LOAM 0.18 0.85 0.64 1.08 0.04 0.12 0.04 0.14

3 LOAM 6.27 3.08 4.83 8.50 16.84 58.81 10.74 62.11
LeGO-LOAM 4.57 5.39 3.68 7.96 6.69 7.79 10.76 14.87

tion and lidar odometry modules are reduced by one order of magnitude in LeGO-

LOAM. Note that the runtime of these two modules in LOAM is more than 100ms

on a Jetson. As a result, many scans are skipped because real-time performance is

not achieved by LOAM on an embedded system. The runtime of lidar mapping is

also reduced by at least 60% when LeGO-LOAM is used.

4.3.3.4 Pose error comparison

By setting the initial pose to [0, 0, 0, 0, 0, 0] in all experiments, we compute the relative

pose estimation error by comparing the final pose with the initial pose. Rotational

107

(a) (b)

Figure 4.15: LeGO-LOAM, KITTI dataset loop closure test, using the Jetson. Color
variation indicates elevation change.

error (in degrees) and translational error (in meters) are listed in Table 4.5 for both

methods over both computers. By using the proposed framework, LeGO-LOAM

can achieve comparable or better position estimation accuracy with less computation

time.

4.3.4 Loop Closure Test using KITTI Dataset

Our final experiment applies LeGO-LOAM to the KITTI dataset [80]. Since the

tests of LOAM over the KITTI datasets in [79] run at 10% of the real-time speed, we

only explore LeGO-LOAM and its potential for real-time applications with embedded

systems, where the length of travel is significant enough to require a full SLAM

solution. The results from LeGO-LOAM on a Jetson using sequence 00 are shown

in Figure 4.15. To achieve real-time performance on the Jetson, we downsample the

scan from the HDL-64E to the same range image that is used in previous section

for the VLP-16. In other words, 75% of the points of each scan are omitted before

108

processing. ICP is used here for adding constraints between nodes in the pose graph.

The graph is then optimized using iSAM2 [128]. At last, we use the optimized graph

to correct the sensor pose and map. More loop closure tests can be found in the video

attachment.

4.4 Conclusions

In this chapter, we have proposed LeGO-LOAM, a lightweight and ground-optimized

lidar odometry and mapping method, for performing real-time pose estimation of

UGVs in complex environments. LeGO-LOAM is lightweight, as it can be used on an

embedded system and achieve real-time performance. LeGO-LOAM is also ground-

optimized, leveraging ground separation, point cloud segmentation, and improved L-

M optimization. Valueless points that may represent unreliable features are filtered

out in this process. The two-step L-M optimization computes different components

of a pose transformation separately. The proposed method is evaluated on a series

of UGV datasets gathered in outdoor environments. The results show that LeGO-

LOAM can achieve similar or better accuracy when compared with the state-of-the-

art algorithm LOAM. The computation time of LeGO-LOAM is also greatly reduced.

Future work involves exploring its application to other classes of vehicles.

Though LeGO-LOAM is especially optimized for pose estimation on ground ve-

hicles, its application could potentially be extended to other vehicles, e.g., unmanned

aerial vehicles (UAVs), with minor changes. When applying LeGO-LOAM to a UAV,

we would not assume the ground is present in a scan. A scan’s point cloud would be

segmented without ground extraction. The feature extraction process would be the

same for the selection of Fe, Fe and Fp. Instead of extracting planar features for Fp

from points that are labeled as ground points, the features in Fp would be selected

109

from all segmented points. Then the original L-M method would be used to obtain the

transformation between two scans instead of using the two-step optimization method.

Though the computation time will increase after these changes, LeGO-LOAM is still

efficient, as a large number of points are omitted in noisy outdoor environments after

segmentation. The accuracy of the estimated feature correspondences may improve,

as they benefit from segmentation. In addition, the ability to perform loop closures

with LeGO-LOAM online makes it a useful tool for long-duration navigation tasks.

110

Chapter 5

Learning-Enhanced Perception

5.1 BGK Inference for Terrain Traversability Mapping

5.1.1 Introduction

In this chapter, we propose Bayesian generalized kernel (BGK) inference [130] for

solving the traversability mapping problem, with the aid of sparse kernels [131]. We

first apply BGK elevation inference to solve the sparse data problem encountered

during terrain mapping. Then we relieve the typical computational burden by only

performing traversability computations over the elevation data at selected locations.

The traversability of locations elsewhere is estimated by BGK traversability inference.

This framework enables us to perform online traversability mapping with sparse lidar

data and hardware that is compatible with a small UGV. To the best of our knowledge,

this is the first application of Bayesian generalized kernel inference to the problem of

terrain mapping [5].

5.1.2 Technical Approach

We define the traversability mapping problem and give the details of our solution.

Given a sampled 3D point cloud, we first represent the environment as an elevation

map. Finely and uniformly discretized planar “grid cells” on the ground are each

assigned a height value. We then classify each cell as traversable or non-traversable.

To solve this problem efficiently and precisely, we employ the Bayesian kernel infer-

ence method of Vega-Brown et al. [130] in two forms: regression, to obtain a dense

elevation map me; and classification, to determine traversability map mv.

111

5.1.2.1 Bayesian Generalized Kernel Inference

Given observations D = {(xi, yi)i=1:N}, we seek to infer a probability distribution of

a target value parameterized on the latent space Θ :

p(y∗|x∗,D) ∝
∫
p(y∗|θ∗)p(θ∗|x∗,D)dθ∗, (5.1)

where

p(θ∗|x∗,D) ∝
∫
θ1:N

N∏
i=1

p(yi|θi)p(θ1:N ,θ
∗|x1:N ,x

∗)dθ1:N (5.2)

is the posterior distribution of the latent parameters associated with the target input.

Unlike Gaussian Processes, which assume all parameters Θ are correlated, in Bayesian

generalized kernel inference, parameters over the observation input are conditionally

independent given target input

p(θ1:N ,θ
∗|x1:N ,x

∗) =
N∏
i=1

p(θi|xi,θ∗,x∗)p(θ∗|x∗), (5.3)

which enables us to marginalize latent parameters

p(θ∗|x∗,D) ∝
N∏
i=1

p(yi|θ∗,x∗,xi)p(θ∗|x∗). (5.4)

If we further construct a smooth extended likelihood model, we are able to represent

the posterior parameters as follows [130],

p(θ∗|x∗,D) ∝
N∏
i=1

p(yi|θ∗)k(xi,x
∗)p(θ∗|x∗), (5.5)

112

where k(·, ·) is a kernel function. The posterior can be exactly determined if the

likelihood model is from the exponential family and the corresponding conjugate

prior is assumed. Two applications of this inference model are employed here.

5.1.2.2 Bayesian Kernel Elevation Regression

For elevation regression, we assume a Gaussian model y ∼ N (µ, σ2) with fixed and

known variances σ2. The conjugate prior is also Gaussian µ ∼ N (µ0, σ
2/λ), where

we define λ as a hyperparameter reflecting our confidence in the prior, with λ =

0 indicating no confidence, and λ → ∞ indicating a state of perfect knowledge.

Applying Equation 5.5 with the above assumptions,

p(µ∗|x∗,D) ∝
N∏
i=1

exp

{
− 1

2

(yi − µ)2

σ2
k(xi,x

∗)

}
exp

{
− 1

2

(µ− µ0)2

σ2
λ

}
. (5.6)

The mean and variance of the posterior parameters can be shown as

E[µ∗|λ,D,x∗] =
λµ0 +

∑N
i=1 k(xi,x

∗)yi

λ+
∑N

i=1 k(xi,x∗)
, Var[µ∗|λ,D,x∗] =

σ2

λ∗
, (5.7)

where λ∗ = λ+
∑N

i=1 k(xi,x
∗). Therefore, we can derive the mean of the posterior pre-

dictive distribution, which is given by E[y∗|λ,D,x∗] = E[µ∗|λ,D,x∗]. Consequently,

applying this method to incremental elevation inference is straightforward. At each

time instance, the elevation y∗ at new location x∗ can be estimated using Equation

5.7 with the new training data D, where x indicates the discrete locations in me

that are currently observed, y is the observed elevation, and x∗ represents the map

locations that are within distance l of x in me.

113

5.1.2.3 Bayesian Kernel Traversability Classification

To perform classification, we similarly treat traversability as a Bernoulli distributed

binary random variable, i.e. y ∼ Ber(θ), and we seek to estimate the value of the

parameter θ∗. We again adopt a conjugate prior formulation where θ ∼ Beta(α0, β0),

in which α0 and β0 are hyperparameters. The posterior is also a Beta distribution,

p(θ∗|x∗,D) ∝ θα
∗−1(1− θ)β∗−1, (5.8)

and we have

α∗ = α0 +
N∑
i=1

k(xi,x
∗)yi, β∗ = β0 +

N∑
i=1

k(xi,x
∗)(1− yi). (5.9)

The mean and variance of the posterior predictive distribution are

E[y∗|α0, β0,D,x∗] =
α∗

α∗ + β∗
, Var[y∗|α0, β0,D,x∗] =

α∗β∗

(α∗ + β∗)2
. (5.10)

5.1.2.4 Traversability Training Data

Compared with the process of elevation regression that is described in Section 5.1.2.2,

the training dataset D for traversability classification is not directly observed - instead

our traversability training data are derived from the results of elevation inference. The

x values in D are the same as those used in Section 5.1.2.2 for elevation inference.

The y values in D, which represent the traversability of these cells, are computed by

adapting the traversability estimation framework of [85]. The traversability of a cell

is determined by three criteria: the step height h, the slope s and the roughness r:

v = α1
h

hcrit

+ α2
s

scrit

+ α3
r

rcrit

, (5.11)

114

(a) Step height h (b) Slope s (c) Roughness r

Figure 5.1: Three criteria that determines the traversability of a cell in the map: the
maximum step height h, the slope s and the roughness r.

where α1, α2 and α3 are weights which sum to 1. hcrit, scrit and rcrit, which represent

the maximum allowable step height, slope and roughness respectively, are critical

values that may cause the robot to tip over or become stuck. The traversability v

has a range of [0, 1]. A small value means the local terrain is flat and smooth, while

a large value indicates rough terrain. When the traversability of a cell is estimated,

all three criteria must be computed from me. If one of the criteria exceeds its critical

value, the corresponding cell is labeled non-traversable. For the sake of brevity, the

detailed procedures of obtaining step height h, slope s and roughness r can be found

in [85].

We note that when the elevation of a grid cell is changed due to the arrival of

new measurements, the traversability of all neighboring cells, within at least the radius

of the robot, needs to be re-computed. However, the direct computation of traversabil-

ity using Equation 5.11, which involves plane fitting and eigendecomposition, over all

affected cells, is intractable for use in real-time. Thus we only perform this compu-

tation for the cells intersected directly by lidar points. We can also incorporate the

estimated elevation variance into Equation 5.11 for a conservative traversability esti-

mate in the regions where measurements are sparse. Although the elevation variance

is not considered in Equation 5.11, we incorporate it into traversability inference in

Section 5.1.2.5 below.

115

5.1.2.5 Traversability Inference

The estimated traversability of cells at new locations x∗, which is the same set used

in Section 5.1.2.2, can be obtained from Equation 5.10. The hyperparameters α∗ and

β∗ at each new location are updated using Equation 5.9. Note that since x and x∗

remain the same as in Section 5.1.2.2, some results of Equation 5.7 can be reused

here to save computational resources.

We can also take advantage of variance predictions in a similar fashion to the

occupancy mapping problem in [132]. The state of a grid cell in mv is modeled as

follows:

state =


traversable, if v < vth, σ

2 < σ2
th

non-traversable, otherwise

(5.12)

in which v is the mean of the predicted traversability at this cell, and vth is the

traversability threshold. Additionally thresholded by σ2
th, the cells with variance σ2

larger than σ2
th will also be labeled as non-traversable. Incorporating the variance

into Equation 5.12 naturally gives us conservative traversability estimation in regions

where observations are sparse.

5.1.2.6 Sparse Kernel

Exact inference is permitted by Equations 5.7 and 5.10 provided that the requisite

kernel computation can be performed exactly. Data structures like k-d trees offer

logarithmic time radius queries, which lend themselves to efficient inference if we

can limit the search neighborhood. Kernels like the radial basis function kernel have

infinite support, leading to approximation error in truncation. Instead, we opt for

116

Sparse 3D Data BGK Elevation
Inference

Traversability
Computation

BGK Traversability
Inference

Figure 5.2: Traversability mapping process. Incoming lidar data, in the form of a
point cloud, is incorporated as training data, and terrain elevation is estimated for
all cells that lie within a designated distance threshold of the points. Traversability
is then directly computed for the cells intersected by lidar points. This is used as the
training data for traversability inference, applied to all grid cells that are within the
same distance threshold used in the previous inference step.

the sparse kernel [131]:

k(x,x∗) =


2+cos(2π d

l
)

3
(1− d

l
) + 1

2π
sin(2π d

l
), if d ≤ l

0, otherwise

(5.13)

where d is the L2 norm ‖x−x∗‖2. The kernel has support on the interval [0, l], which

allows exact inference to be performed in log-linear time.

5.1.2.7 BGK Traversability Mapping Process

The proposed BGK traversability mapping framework is shown in Figure 5.2. Upon

receiving lidar data in the form of a point cloud, we perform BGK elevation inference

to obtain a dense height map me. Then we directly compute traversability for the cells

that were explicitly intersected by the point cloud. BGK traversability inference then

estimates the traversability of all cells whose elevation was inferred in the previous

step, and the traversability map mv is produced as output.

We note that an alternative approach for traversability mapping is to perform

BGK traversability inference directly, without an elevation inference step. Compared

with the proposed framework, however, we have encountered inferior results, due in

part to the fact that the resulting traversability estimates are less accurate when their

117

training data is supported by limited, sparse elevation data.

5.1.3 Experiments

We evaluate the proposed terrain traversability mapping framework quantitatively

and qualitatively in simulated and real-world environments. The method is imple-

mented in C++ and executed using the robot operating system (ROS) [129] in Ubuntu

Linux. The computational hardware is a laptop with an i7 2.5GHz CPU and 16GB

memory. Throughout all the experiments, no multi-threading or GPU parallel com-

putation is used for speed improvements.

5.1.3.1 Simulated Data

Gazebo [133] is utilized for two simulated experiments, which feature structured and

unstructured environments, since the ground truth of the environment can be known

precisely. These two environments are referred to as City, an urban environment that

features buildings, trees, roads and sidewalks, and Aerial, a mountainous environment

that features rough terrain and hills. Two volumetric scanning lidar sensors, the

Velodyne VLP-16 and HDL-32E, are simulated in Gazebo for data gathering (applied

to the City and Aerial maps respectively). Both sensors operate at 10Hz in all

experiments; the real-time experiments are shown in full in the video attachment1.

Three approaches are compared here to evaluate the proposed method. The

first approach implemented is the baseline approach. It only processes the raw point

cloud data; no inference is used. The second approach, which performs BGK elevation

inference and directly computes traversability for all cells where elevation is inferred,

is referred to as BGK + Trav for convenience. The proposed framework, which

utilizes both BGK elevation and traversability inference in sequence, is referred to as

1https://youtu.be/ewrCyDiWi-8

https://youtu.be/ewrCyDiWi-8

118

BGK+. For BGK elevation inference, we set λ = 0, which means that we have no

prior knowledge of elevation at any position. For traversability inference, we apply

the parameters α0 = β0 = 0.001 to enforce a weak uninformative prior on all cells.

The distance threshold l is selected to be 0.3m and 1.0m for our two simulated tests,

respectively. The UGV is assumed to have a radius of 0.3m. Note that when we

estimate the state of a cell using BGK+, the variance in Equation 5.12 is not used,

for the sake of fair comparison with the ground truth.

We implement the traversability mapping task as two independent processes.

One process performs raw point cloud registration and BGK elevation inference, and

the other performs the traversability computation of Equation 5.11 and traversability

inference. Since we acquire lidar scans at a rate of 10Hz, scans may be dropped if

they take any one of the two processes longer than 0.1 seconds to complete.

5.1.3.2 Structured Environment

The simulated structured environment2, which is shown in Figure 5.3(a), spans 50

x 210 meters. The ground truth representation of the environment is obtained by

taking lidar scans along the center of the road, from top to bottom, at a constant

velocity of 1 m/s. The trajectory of the lidar is a straight line with a length of 210

meters, and there are 0.1 meters between scans. As a result, a total number of 2101

scans comprise our ground truth data. However, it is often undesirable to drive this

slowly in real-world mapping scenarios. Thus, we will only use scans at 1m intervals

for traversability mapping, equivalent to a vehicle that moves at a speed of 36 km/h

with a scan rate of 10Hz. As a result, we obtain 211 scans for the traversability

mapping comparison.

The ground truth is shown in Figure 5.3(b). Traversable, non-traversable and

2Simulated structured environment: https://bitbucket.org/osrf/citysim

https://bitbucket.org/osrf/citysim

119

(a) Gazebo (b) GT (c) Baseline (d) BGK+Trav (e) BGK+ (f) Variance

Figure 5.3: Structured environment simulation. The above plots illustrate (a)
top view of the simulated urban environment in Gazebo, (b) ground truth of the
traversability map, (c) traversability map produced by the baseline approach, (d)
map produced by the BGK+Trav approach, (e) the results of the proposed method,
BGK+, and (f) the variance map of BGK+ calculated by Equation 5.10, where white
color indicates low variance, and magenta indicates high variance.

unknown regions are colored gray, red and black respectively. Figure 5.3(c) shows the

traversability mapping result by applying the baseline approach. As no inference is

performed, it only covers 57% of the area covered by the ground truth. When the

BGK+Trav approach is applied, it can cover 93% of the area with the aid of BGK

elevation inference. However, due to the intensive traversability computation, real-

time performance is not achieved, and 114 out of 211 scans are skipped. At last, we

test BGK+, which performs both elevation and traversability inference, on the same

data. It closes many of the gaps in Figures 5.3(c) and 5.3(d), achieving 100% map

coverage. As expected, the variance map of BGK+, which is obtained from Equation

5.7, shows that the regions covered by fewer observations have higher variance values

120

(a) Gazebo environment (b) Ground truth (c) Baseline

(d) BGK+Trav (e) BGK+ (f) Variance Map

Figure 5.4: Unstructured environment simulation. The Aerial simulated terrain
model is shown in (a). Traversability maps of the ground truth, baseline, BGK+Trav
and BGK+ methods are shown in (b), (c), (d) and (e) respectively. The variance map
of BGK+ is shown in (f).

(colored in magenta).

5.1.3.3 Unstructured Environment

The simulated unstructured environment3, which is shown in Figure 5.4(a), spans 120

x 120 meters. In this test, we simulate an unmanned aerial vehicle’s fixed-altitude

flyover of the environment to produce a map for a UGV, in which it captures a scan

every 10 meters along the latitude and longitude directions. Thus we obtain a total of

169 (13 x 13) scans for this mapping comparison. The resulting traversability maps

of each method are shown in Figure 5.4 (d), (e) and (f) respectively. The same color

3Simulated unstructured environment: http://wiki.ros.org/hector_quadrotor

http://wiki.ros.org/hector_quadrotor

121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

BGK+Trav, AUC=0.97403
BGK+, AUC=0.98073

(a) City dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

BGK+Trav, AUC=0.93004
BGK+, AUC=0.98694

(b) Aerial dataset

Figure 5.5: Receiver operating characteristic curves. The ROC curves of BGK+Trav
and BGK+ methods for the City and Aerial datasets are shown in (a) and (b)
respectively.

scheme of Figure 5.3 is also applied here. The baseline approach can only cover 50%

of the area with the available scans. Because the BGK+Trav method suffers from

prohibitive computational cost, it skips 84% of the scans. However, 89% of the map

is covered due to elevation inference. BGK+ is able to cover 100% of the map while

maintaining real-time performance.

5.1.3.4 Benchmarking Results

The receiver operating characteristic (ROC) curves in Figure 5.5 show a predictive

performance comparison between BGK+Trav and BGK+. The ROC curves plot

the true positive rate against the false positive rate. We compare the predicted

traversability to a ground-truth traversability of 1 for a non-traversable cell and 0 for

a traversable cell, so that the comparison of inference accuracy is independent of the

choice of threshold in Equation 5.12. The plot can be viewed as a plot of predictive

performance as a function of the threshold. The area under the curve (AUC) is also

122

Table 5.1: Quantitative results for different mapping approaches

Dataset City Aerial

Method Baseline BGK+Trav BGK+ Baseline BGK+Trav BGK+

Map coverage (%) 57 90 100 50 89 100

Skipped scans 32/211 114/211 1/211 82/169 142/169 3/169

Elevation
inference time (s)

N/A 0.043 0.042 N/A 0.069 0.066

Traversability
calculation time (s)

0.093 0.174 0.029 0.149 0.583 0.045

Traversability
inference time (s)

N/A N/A 0.017 N/A N/A 0.020

Mean squared
error (sq m)

N/A 0.0089 0.0052 N/A 0.039 0.011

provided in each case for comparison of prediction accuracy. BGK+ outperforms

BGK+Trav in both simulated environments with a higher AUC. We also perform

tests for the one-step alternative approach that only performs BGK traversability

inference without performing BGK elevation inference. The AUCs of this approach

are 0.9617 and 0.9581 for the two tests respectively. Thus BGK+, which performs

two-step inference, achieves a higher AUC than either one-step inference approach.

Quantitative results for the different methods compared in simulation are sum-

marized in Table 5.1. BGK+ infers the contents of 100% of the visible terrain area

despite sparse lidar coverage in both experiments. Since BGK+ only explicitly com-

putes the traversability of cells where new points arrive, it requires less computation

time. Mean squared error (MSE) is provided for the elevation inference step of all

methods. Since BGK+ skips fewer scans, the MSE of BGK+ is lower than the MSE of

BGK+Trav. BGK+ shows advantages in terms of both efficiency and accuracy. We

also note that BGK+Trav yields the best results when unlimited computation time

is available.

123

Figure 5.6: Traversability map of a large-scale urban area using BGK+. A satellite
image of the mapped area is shown at left. The traversability map from applying
BGK+ is shown at center. Representative scenes of the mapped environment are
shown at right.

5.1.3.5 Large-scale Urban Environment

We also evaluate our framework in a large-scale urban area. We manually drove a

Jackal UGV with a VLP-16 lidar across the area for about 39 min. at a speed of

about 1.5 m/s. The mapped area has a maximum elevation change of 15 meters, and

spans 285 x 550 meters. A satellite image of the mapped area is shown at the left of

Figure 5.6. A total number of 22,636 scans, which are captured at a rate of 10Hz, are

used for traversability mapping. The final traversability map from BGK+ is shown

in the center of the figure. Four representative images of the environment, along

with the traversability map, are shown at right. The proposed system successfully

distinguishes non-traversable areas and traversable areas - we note in particular that

curbs, which are challenging for autonomous urban navigation, are precisely marked

124

as non-traversable throughout the map.

5.1.4 Conclusions

In this section, we have proposed applying Bayesian generalized kernel inference to

terrain traversability mapping. Our framework is unique in its composition, with two

sequential inference steps. The first step performs elevation inference to address the

sparsity of the available point clouds, and the second step performs traversability

inference to relieve the burden of exhaustive traversability computation. The pro-

posed framework is validated using both simulated and real-world data and provides

efficiency and accuracy for real-time terrain mapping with lidar.

125

5.2 Lidar Super-resolution

5.2.1 Introduction

Lidar is an essential sensing capability for many robot navigation tasks, including

localization, mapping, object detection and tracking. A typical 3D lidar has multiple

channels that revolve at different heights, producing a 3D point cloud with ring-like

structure. The number of channels in the sensor determines the vertical density of

its point clouds. A denser point cloud from a lidar with more channels can capture

the fine details of the environment; applications such as terrain modeling and object

detection can benefit greatly from a higher resolution lidar. However, increasing the

number of channels can be very costly. For example, the most popular 16-channel

lidar, the Velodyne VLP-16, costs around $4,000. The 32-channel HDL-32E and

VLP-32C, and the 64-channel HDL-64E cost around $30,000, $35,000 and $75,000

respectively.

In this chapter, we propose a dedicated deep learning framework for lidar super-

resolution, which predicts the observations of a high-resolution (hi-res) lidar over a

scene observed only by a low-resolution (low-res) lidar. We convert the resulting

super-resolution (super-res) point cloud problem in 3D Euclidean space into a super-

res problem in 2D image space, and solve this problem using a deep convolutional

neural network. Unlike many existing super-res image methods that use high-res real-

world data for training a neural network, we train our system using only computer-

generated data from a simulation environment. This affords us the flexibility to

train the system for operation in scenarios where real hi-res data is unavailable, and

allows us to consider robot perception problems beyond those pertaining specifically

to driving with passenger vehicles. We investigate the benefits of deep learning in

a setting where much of the environment is characterized by sharp discontinuities

126

Low-resolution
Point Cloud

Low-resolution
Range Image Neural Network High-resolution

Range Image
High-resolution

Point Cloud

Figure 5.7: Workflow for lidar super-resolution.

that are not well-captured by simpler interpolation techniques. Furthermore, we use

Monte-Carlo dropout [134, 135] to approximate the outputs of a Bayesian Neural

Network (BNN) [136], which naturally provides uncertainty estimation to support

our inference task.

5.2.2 Technical Approach

This section describes the proposed lidar super-resolution methodology in detail.

Since the horizontal resolution of a modern 3D lidar is typically high enough, we only

enhance vertical resolution throughout this work. However, the proposed approach,

without loss of generality, is also applicable for enhancing the horizontal resolution

of a lidar with only a few modifications to the neural network. The workflow of the

proposed approach is shown in Figure 5.7. Given a sparse point cloud from a 3D

lidar, we first project it and obtain a low-res range image. This range image is then

provided as input to a neural network, which is trained purely on simulated data,

for upscaling. A dense point cloud is received by transforming the inferred high-res

range image pixels into 3D coordinates.

5.2.2.1 Data gathering

Similar to the method proposed in [137], we leverage a rich virtual world as a tool for

generating high-res point clouds with simulated lidar. There are many open source

software packages, e.g. CARLA, Gazebo, Unity, that are capable of simulating various

kinds of lidar on ground vehicles. Specifically, we opt to use the CARLA simulator

[138] due to its ease of use and thorough documentation.

127

(a) CARLA Town 02 (b) “VLP-64” scan

Figure 5.8: A representative point cloud captured from CARLA using a simulated
“VLP-64”. Color variation indicates elevation change.

The first step involves identifying the lidar we wish to simulate. Let us assume

we have a VLP-16 and we wish to quadruple (4× upscaling (16 to 64)) its resolution.

The VLP-16 has a vertical field of view (FOV) of 30◦ and a horizontal FOV of 360◦.

The 16-channel sensor provides a vertical angular resolution of 2◦, which is very sparse

for mapping. We want to simulate a 64-channel “VLP-64” in CARLA, which also

has a vertical and horizontal FOV of 30◦ and 360◦ respectively. With the simulated

lidar identified, we can either manually or autonomously drive a vehicle in the virtual

environment and gather high-res point clouds captured by this simulated lidar. An

example of the lidar data produced in CARLA is shown in Figure 5.8.

We note that the simulated high-res lidar should have the same vertical and

horizontal FOV as the low-res lidar. For example, we cannot train a neural network

that predicts the perception of HDL-64E using the data from VLP-16 because their

vertical FOVs are different.

128

5.2.2.2 Data preparation and augmentation

We then project the simulated high-res point cloud onto a range image, which can

be processed by the neural network. A scan from the simulated “VLP-64” 3D lidar

will yield a high-res range image with a resolution of 64-by-1024. This high-res range

image will serve as the ground truth comprising our training data. Then, we evenly

extract 16 rows from this high-res range image and form a low-res range image, which

has a resolution of 16-by-1024. This low-res range image is equivalent to the point

cloud data captured by a VLP-16 after projection, and comprises the input to the

neural network during training. We note that the resolution of the original range

image from a VLP-16 sensor varies from 16-by-900 to 16-by-3600 depending on the

sensor rotation rate. For the purpose of convenience and demonstration, we choose the

horizontal resolution of all range images to be 1024 to accommodate different sensors

throughout all experiments. We also “cut” every range scan at the location facing the

rear of the vehicle, for the purpose of converting it to a flattened 2D image. This is

typically the region of least importance for automated driving and robot perceptual

tasks, and is in many cases obstructed by the body of the vehicle.

We then augment the data by performing top-down flipping, horizontal flipping

and shifting, and range scaling to account for different environment structures and

sensor mounting heights (such as driving on different sides of the road, and underneath

structures). To increase prediction robustness, we also vary sensor mounting attitudes

during data gathering before augmentation. Finally, the low-res and high-res range

images are then normalized to 0− 1 and sent to train the neural network.

129

16
x1
02
4

32
x1
02
4

6464

128128

256 256

512 512

1024 1024

512 512 512

256 256 256

128128128

646464

64
x1
02
4

Input/Output
Transposed
Conv

Conv+BatchN+
ReLU

Average
Pooling

Dropout
Conv+
ReLU

Figure 5.9: Our proposed neural network architecture for range image super-
resolution. The network follows an encoder-decoder architecture. Skip-connections
are denoted by solid lines with arrows.

5.2.2.3 Neural Network Architecture

The lidar super-res problem can now be formulated as an image super-res problem.

Adapted from the encoder-decoder architecture of [139], we configure a neural net-

work for range image super-resolution, shown in Figure 5.9. The input, low-res range

image is first processed by two transposed convolutions for increasing the image res-

olution to the desired level. Then the encoder consists of a sequence of convolutional

blocks and average pooling layers for downsampling the feature spatial resolutions

while increasing filter banks. On the other hand, the decoder has a reversed struc-

ture with transposed convolutions for upsampling the feature spatial resolutions. All

convolutions in the convolutional blocks are followed by batch normalization [140]

and ReLU [141]. The output layer produces the final high-res range image using a

single convolution filter without batch normalization.

5.2.2.4 Noise Removal

We note that we have placed numerous dropout layers before and after the convolu-

tional blocks in Figure 5.9. This is because performing convolutional operations on

130

sensor

Figure 5.10: Smoothing effects after applying convolutions.

a range image will unavoidably cause smoothing effects on sharp and discontinuous

object boundaries [142]. An illustrative example of this smoothing effect is shown in

Figure 5.10. Ten range measurements from a lidar channel are shown in a top-down

view. The gray lines represent two walls, and the green dots indicate the true range

measurements. After convolution, the range measurements are smoothed (shown by

the red curve) in places where environmental discontinuities occur. Incorporating

smoothed range predictions, such as the three red dots shown, into a robot’s point

cloud will greatly deteriorate the accuracy of the resulting map.

To address this problem, we novelly apply Monte-Carlo dropout (MC-dropout)

for estimating the uncertainty of our range predictions [135]. MC-dropout regular-

ization approximates a BNN by performing multiple feed-forward passes with active

dropout at inference time to produce a distribution over outputs [135]. Given ob-

servations D = {(xi, yi)i=1:N}, we seek to infer a probability distribution of a target

value parameterized on the latent space Θ:

p(y∗|x∗,D) ∝
∫
p(y∗|θ∗)p(θ∗|x∗,D)dθ∗, (5.14)

where θ∗ are the latent parameters associated with the target input. More specifically,

given a test image x∗, the network performs T inferences with the same dropout rate

131

used during training. We then obtain:

p(y∗|x∗) =
1

T

T∑
t=1

p(y∗|x∗,θ∗t), (5.15)

with θ∗t being the weights of the network for the tth inference. We can evaluate the

uncertainty of our range predictions by inspecting the variance of this probability

distribution. The final prediction is obtained as follows:

y∗f =


y∗, if σ < λy∗

0, otherwise

(5.16)

in which y∗ is the predicted mean from Equation 5.15, and σ is its standard devia-

tion. The parameter λ causes the noise removal threshold to scale linearly with the

predicted sensor range, capturing the fact that the noise level worsens with distance

from the sensor. Throughout this work we choose a value of 0.03 for λ, as it is found

to give the most accurate mapping results, and we choose an inference quantity T

of 50 for all experiments. A larger T yields improved results, as the true probability

distribution p(y∗|x∗) can be better approximated with more predictions.

5.2.3 Experiments

We now describe a series of experiments to quantitatively and qualitatively analyze

the performance of our lidar super-resolution architecture. We perform 4× upscaling

(16 to 64) for all experiments in this section.

Besides benchmarking various methods in 2D image space using L1 loss, we

also show that our method is able to produce dense Octomaps [143] with high accuracy

in 3D Euclidean space. 3D occupancy maps can support a variety of robotics appli-

132

(a) Raw scan (b) w/o MC-dropout (c) w/ MC-dropout (d) Ground truth scan

(e) Baseline (f) w/o MC-dropout (g) w/ MC-dropout (h) Ground truth

Figure 5.11: Scans of an example input (a), predictions by our methods without and
with MC-dropout (b and c) and ground truth (d). As is shown in (b), the inferred
point cloud is noisy due to points that have high uncertainty, motivating our use of
MC-dropout. Occupancy mapping results using a simulated dataset are shown in
(e)-(h). Color variation indicates elevation change.

cations, e.g., planning [1, 2, 3] and exploration [144]. However, sparsity in the point

cloud of a 3D lidar can leave gaps and inconsistencies in traditional occupancy grid

maps, which can be misleading when applied in planning and exploration scenarios.

Intuitively, 3D occupancy mapping can benefit greatly from a higher resolution lidar.

We use receiver operating characteristic (ROC) curves to benchmark the predictive

accuracy (with respect to the binary classification of occupancy) of each method. The

ROC curves plot the true positive rate against the false positive rate. We compare

all methods to the ground-truth occupancy (0 - free, 0.5 - unknown, 1 - occupied) for

all cells in the map. The area under the curve (AUC) is provided for each method for

comparison of prediction accuracy. We treat the underlying 64-channel range scan as

ground truth, rather than a complete map with all cells filled, because our specific

goal is to truthfully compare the range prediction accuracy of each method.

133

For the simulated experiments described in Section 5.2.3.1 and 5.2.3.2, we use

the exact same neural network to demonstrate that the proposed method is capable

of performing accurate prediction for sensors with different mounting positions in

different environments. The training data for the neural network is gathered from

CARLA Town 02, which features an urban environment, by simulating a 64-channel

lidar “VLP-64” that has a vertical FOV of 30◦. A low-res 16-channel lidar scan is

obtained by evenly extracting 16-channel data from the high-res data. The low-res

data here is equivalent to the scan obtained from the VLP-16. The training dataset

contains 20,000 scans after data augmentation.

Since the real-world Ouster lidar used in Section 5.2.3.3 has a different FOV

(33.2◦), we gather a new training dataset for network training (see Section 5.2.2.1).

Similarly, we simulate a 64-channel lidar, the OS-1-64, in CARLA Town 02 and gather

high-res data. The 16-channel data is extracted in the same way as described before.

The low-res data here is equivalent to the scan obtained from an OS-1-16 sensor. The

training dataset also contains 20,000 scans after data augmentation.

For network training, Adam optimizer [145] is used with a learning rate of

10−4 and decay factor of 10−5 after each epoch. L1 loss is utilized for penalizing the

differences between the network output and ground truth, as it achieves high accuracy,

fast convergence and improved stability during training. A computer equipped with

a Titan RTX GPU was used for training and testing. The training framework was

implemented in Keras [146] using Tensorflow [147] as a backend in Ubuntu Linux.

5.2.3.1 Simulated indoor dataset

We first demonstrate the benefits of applying MC-dropout. We simulate a 64-channel

lidar “VLP-64” and gather 25 high-res scans in an office-like environment in Gazebo.

The lidar is assumed to be installed on top of a small unmanned ground vehicle

134

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e
Baseline, AUC=0.859

Ours w/ noise, AUC=0.927

Ours w/o noise, AUC=0.956

Figure 5.12: ROC curves for the simulated indoor dataset discussed in Section 5.2.3.1.

(UGV). The sensor is 0.5m above the ground. The environment is populated with

desks and boxes. The low-res 16-channel testing scans are obtained by evenly ex-

tracting 16-channel data from the high-res data. Note that none of these scans are

used for network training, nor is the height at which the sensor is mounted.

A representative low-res scan is shown in Figure 5.11(a). Using this scan as

input, the predicted high-res scans using our method are shown in Figure 5.11(b) and

(c). Without applying MC-dropout, the range prediction is noticeably noisy due to

the smoothing effect caused by convolution, hence the scan shown in Figure 5.11(b).

After noise removal by applying MC-dropout, the predicted scan shows significantly

less noise and resembles the scan of ground truth. The resulting maps are shown

in Figure 5.11(e)-(h). All the Octomaps have a resolution of 0.05m. We refer to

the approach of using low-res lidar scans to produce an Octomap as the baseline

approach. The ground truth Octomap is obtained by using the high-res scans. The

map of baseline approach is sparse, as no inference is performed. As is shown in Figure

5.11(g), the proposed method is able to produce a dense Octomap that resembles the

ground truth Octomap. The AUC and ROC curves of each method are shown in

135

Table 5.2: Quantitative results for the experiments discussed in Section 5.2.3.2 and
5.2.3.3.

Dataset Method L1 Loss
Removed

points (%)

CARLA
Town 01

Linear 0.0184 N/A

Cubic 0.0303 N/A

SR-ResNet 0.0089 12.37

Ours 0.0087 4.13

Ouster

Linear 0.0324 N/A

Cubic 0.0467 N/A

SR-ResNet 0.0211 17.70

Ours 0.0214 8.37

Figure 5.12. The AUC is improved when applying MC-dropout.

We also note that though the network is trained using data from an outdoor

environment, our method is capable of producing meaningful and accurate predictions

for indoor usage, with a different sensor mounting scheme. This demonstrates that

the network is able to learn the complex mapping between low-res input and high-res

output while properly maintaining the structure of surrounding objects.

5.2.3.2 Simulated outdoor dataset

In this experiment, we compare our method with various approaches, which include

the standard linear and cubic interpolation techniques and also the state-of-the-art

super-resolution approach - SR-ResNet [109], using a simulated large scale outdoor

dataset that is gathered in CARLA Town 01. CARLA Town 01 features a suburban

environment with roads, trees, houses, and a variety of terrain. The same sensor that

is used in 5.2.3.1 is used here. The “VLP-64” sensor, which has a height of 1.8m from

the ground, is mounted on top of a full-sized passenger vehicle. We drive the vehicle

136

(a) CARLA Town 01 (b) Baseline (c) Ground truth (d) Linear

(e) Cubic (f) SR-ResNet (g) Ours

Figure 5.13: Occupancy mapping results using a simulated dataset from CARLA
Town 01. Color variation indicates elevation change.

along a trajectory of 3300m and gather a lidar scan every 10m. Thus this dataset

contains 330 scans.

The L1 loss of each method is shown in Table 5.2. The deep learning ap-

proaches outperform the traditional interpolation approaches by a large margin. For

fair comparison, we also apply MC-dropout on SR-ResNet by adding a dropout layer

to the end of each residual block for noise removal. The losses of SR-ResNet and

our method are very close. However, the amount of noise removed per scan from

SR-ResNet is much larger than our method. Though we can adjust λ in Equation

5.16 to retain more points, the mapping accuracy deteriorates greatly as more noisy

points are introduced. We can also decrease the value of λ for SR-ResNet to filter

out more noise. The mapping accuracy then also deteriorates, as more areas in the

map become unknown.

137

(a) CARLA Town 01 (b) Baseline (c) Ground truth (d) Linear

(e) Cubic (f) SR-ResNet (g) Ours

Figure 5.14: Occupancy mapping results using a simulated dataset from CARLA
Town 01. Color variation indicates elevation change.

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Baseline, AUC=0.833

Linear, AUC=0.930

Cubic, AUC=0.908

SR-ResNet, AUC=0.966

Ours, AUC=0.970

Figure 5.15: ROC curves for the simulated outdoor dataset discussed in Section
5.2.3.2, using 330 scans for all compared methods.

The Octomaps of the competing methods using a low-res scan as input are

shown in Figure 5.13. The baseline approach naturally yields the most sparse map.

138

Though offering better coverage, the Octomaps of the linear and cubic methods are

very noisy due to range interpolation between different objects. Though SR-ResNet

outperforms linear and cubic interpolation methods in 2D image space by yielding

smaller L1 loss, its predictions, when shown in 3D Euclidean space, still contain a

great deal of noise at object boundaries. Our method produces a map that is easier

to interpret visually, and which also achieves the highest AUC among all methods.

The AUC and ROC curves for each method using 330 scans are shown in Figure 5.15.

5.2.3.3 Real-world outdoor dataset

In this experiment, we evaluate the proposed method over one publicly available

driving dataset, which we refer to as Ouster4. The Ouster dataset, which consists

of 8825 scans over a span of 15 minutes of driving, is captured in San Francisco,

CA using an Ouster OS-1-64 3D lidar. This 64-channel sensor naturally gives us the

ground truth for validation, as we only need to extract a few channels of data for

generating low-res range image inputs. As is shown in Table 5.2, both SR-ResNet

and our method achieve similar L1 loss, which is evaluated over 8825 scans. However,

the percentage of removed points of our approach is much less when compared with

the results of SR-ResNet. In other words, the predictions of our approach are of lower

variance.

We use 15 scans from this dataset to obtain real-world low-res and high-res

lidar scans, which are then used to obtain Octomaps, in the same way that is described

in our previous experiments. The scans are registered using LeGO-LOAM [4]. The

mapping results at two intersections are shown in Figure 5.17 and 5.18. All the

Octomaps have a resolution of 0.3m. The AUC and ROC curves for each method

using these 15 scans are shown in Figure 5.17(h). Again, our proposed approach

4https://git.io/fhbBt

https://git.io/fhbBt

139

(a) Google earth image

(b) Baseline (c) Ground truth

(d) Linear (e) Cubic

(f) SR-ResNet (g) Ours

Figure 5.16: The resulting Octomaps from the Ouster dataset. (a) The mapped
street in San Francisco. (b) Octomaps produced with 16-channel low-res point clouds.
Performing 4× upscaling on the baseline data, the Octomaps generated from inferred
64-channel high-res point clouds using linear, cubic interpolation, SR-ResNet and our
method are shown in (d), (e), (f) and (g) respectively. Maps are colored according to
elevation.

outperforms all methods by achieving the highest AUC.

We also show three representative point clouds from Ouster dataset. These

three point clouds are captured in a narrow street, an open intersection and a slope

surrounded by vegetation. Sub-sampled 16-channel data is used to form a low-res

point cloud. As is shown in Figure 5.19, the inferred point clouds resemble the

ground truth point clouds well in various environments. The range images that are

projected using the point clouds in Figure 5.19 are shown in 5.20.

140

(a) Google earth image (b) Baseline (c) Ground truth (d) Linear

(e) Cubic (f) SR-ResNet (g) Ours

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Baseline, AUC=0.845

Linear, AUC=0.917

Cubic, AUC=0.907

SR-ResNet, AUC=0.951

Ours, AUC=0.959

(h) ROC curves

Figure 5.17: Occupancy mapping results using the Ouster dataset. (h) shows the
results using 15 scans of the compared methods. Color variation indicates elevation
change.

5.2.4 Conclusions

We have proposed a lidar super-resolution method that produces high resolution point

clouds with high accuracy. Our method transforms the problem from 3D Euclidean

space to an image super-resolution problem in 2D image space, and deep learning

is utilized to enhance the resolution of a range image, which is projected back into

a point cloud. We train our neural network using computer-generated data, which

affords the flexibility to consider a wide range of operational scenarios. We further

improve the inference accuracy by applying MC-dropout. The proposed method is

evaluated on a series of datasets, and the results show that our method can produce

realistic high resolution maps with high accuracy. In particular, we evaluate the

super-resolution framework through a study of its utility for occupancy mapping, since

141

(a) Baseline (b) Ground truth (c) Linear

(d) Cubic (e) SR-ResNet (f) Ours

Figure 5.18: Local mapping results at an intersection (right side of Figure 5.16(a))
using Ouster dataset. Color variation indicates elevation change.

this is a widely useful perceptual end-product for which interpolation may occur in

various locations along a robot’s perceptual pipeline. In addition to the appealing

generalizability of up-scaling at the front end, by predicting the measurements of a

higher-resolution sensor, our approach also achieves superior accuracy in the end-stage

maps produced, when compared with simpler methods that interpolate in Euclidean

space.

142

(a) Input - 1 (b) Predicted - 1 (c) Ground truth - 1

(d) Input - 2 (e) Predicted - 2 (f) Ground truth - 2

(g) Input - 3 (h) Predicted - 3 (i) Ground truth - 3

Figure 5.19: Visualization of several representative point clouds from the Ouster
dataset. The low density point clouds before inference are shown in (a), (d) and
(g). The inferred high-res point clouds (4× upscaling) are shown in (b), (e) and
(h). The ground truth point cloud captured by the lidar is shown in (c), (f) and
(i). Color variation indicates lidar channel index. The three representative point
clouds are captured in a narrow street, a slope surrounded by vegetation and an open
intersection. We can observe that objects such as buildings, roads and pillars are
inferred well.

143

0 1024Raw 16-channel range image

0
16

0 1024Predicted 64-channel range image

0

64

0 1024Ground truth 64-channel range image

0

64

(a) Range images for scene 1 shown in Fig. 5.19

0 1024Raw 16-channel range image

0
16

0 1024Predicted 64-channel range image

0

64

0 1024Ground truth 64-channel range image

0

64

(b) Range images for scene 2 shown in Fig. 5.19

0 1024Raw 16-channel range image

0
16

0 1024Predicted 64-channel range image

0

64

0 1024Ground truth 64-channel range image

0

64

(c) Range images for scene 3 shown in Fig. 5.19

Figure 5.20: Range images of the projected point clouds shown in Figure 5.19. Black
color indicates a range value of zero, for which no points are added to the point
cloud. Since performing convolutional operations on a range image will unavoidably
cause smoothing effects on sharp and discontinuous object boundaries, we apply MC-
dropout to identify these erroneous predictions. Accordingly, the range predictions
with high variance are removed.

144

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we worked towards developing several navigation algorithms that feature

minimalistic and learning-enabled design for unmanned ground vehicles. These nav-

igation algorithms, which tackle challenging problems in multi-objective path plan-

ning, real-time localization, and sparse sensing in perception, bring reliable autonomy

to UGVs for their applications in various environments.

In Chapter 3, we presented three novel multi-objective path planning algo-

rithms that leverage lexicographic optimization method for various planning scenar-

ios. In Chapter 3.1, we proposed MR-RRT* that plans minimum risk paths in ac-

cordance with primary and secondary cost criteria. MR-RRT* affords the user the

flexibility to tune the relative importance of the alternate cost criteria, while ad-

hering to the requirements for asymptotically optimal planning with respect to the

primary cost. In Chapter 3.2, we described MM-RRT* for robot path planning under

localization uncertainty. The algorithm builds and maintains a tree that is shared in

state space and belief space, with a single belief per robot state. The algorithm offers

a compelling alternative to sampling-based algorithms with additive cost represen-

tations of uncertainty, which will penalize high-precision navigation routes that are

longer in duration. In Chapter 3.3, we characterized and proposed advances in the

technique of Belief Roadmap Search (BRMS), the process of searching a roadmap in

belief space for robot motion planning under localization uncertainty. We proposed a

best-first implementation of BRMS, in contrast to the standard breadth-first imple-

145

mentation, which we showed to improve the computational cost of search by up to

49% by eliminating unnecessary node expansions.

In Chapter 4, we proposed LeGO-LOAM for real-time pose estimation with

ground vehicles. LeGO-LOAM is lightweight, as it can achieve real-time pose es-

timation on a low-power embedded system, Jetson TX2. LeGO-LOAM is ground-

optimized, as it leverages the presence of the ground in its segmentation and opti-

mization steps. We compared the performance of LeGO-LOAM with a state-of-the-

art method, LOAM, using datasets gathered from variable-terrain environments with

ground vehicles, and showed that LeGO-LOAM can achieve similar or better accuracy

with reduced computational expense.

In Chapter 5, we introduced two novel learning-enhanced perception methods

for sparse sensing problem. We first presented a new approach for traversability map-

ping with sparse lidar scans collected by ground vehicles, which leverages probabilistic

inference to build descriptive terrain maps. We applied Bayesian generalized kernel

inference sequentially to the problems of terrain elevation and traversability inference.

We verified the capabilities of the approach over a variety of datasets, demonstrating

its suitability for online use in real-world applications. Then, we proposed a frame-

work for lidar super-resolution to increase the apparent resolution of a physical lidar.

The framework is especially designed for ground vehicles driving on roadways. To

increase the resolution of the point cloud captured by a sparse 3D lidar, we con-

verted this problem from 3D Euclidean space into an image super-resolution problem

in 2D image space, which is solved using a deep convolutional neural network. The

deep network is trained completely using the data obtained from a driving simulator.

We also improved the prediction accuracy by novelly applying Monte-Carlo dropout

and removed the predictions with high uncertainty. The validity of the proposed

framework was tested using several simulated and real-world datasets.

146

Figure 6.1: Localizability map. The ellipse represents the statistically derived error
covariance associated with scan registration. In the areas where no lidar data is
available, the ellipse degenerates to a circle. Grey areas indicate obstacles. Color
variation indicates λ(H′kR

−1
k Hk) change.

6.2 Future Work

6.2.1 Deep Learning-Accelerated Planning Under Uncertainty

In Chapter 3, we used eigenvalue bound ` as an uncertainty metric for planning

under uncertainty. Using this metric offers a small improvement in computational

efficiency over other metrics. However, propagating ` using Equation 3.9 is still

non-trivial as it involves calculating maximum or minimum eigenvalue for λ(FkF
′
k),

λ(Qk) and λ(H′kR
−1
k Hk). The first two terms can be obtained relatively easily as

the state transition model and the process noise is known in most cases. However,

the calculation of λ(H′kR
−1
k Hk) is non-trivial when a more complex sensor is used for

observation, e.g., lidar. When a lidar is used for localization in our problem, we need

to forward simulate the sensor reading for each filter update step. The computation

of this process is intractable as obtaining the measurement noise matrix R involves

computing the statistically derived localization error for each sensor reading. Thus,

we propose to use a deep learning-aided technique to accelerate the evaluation of

λ(H′kR
−1
k Hk). More specifically, we will use a deep neural network to predict the

147

Figure 6.2: Localizability map for Willow Garage. Grey areas indicate obstacles.
Color variation indicates λ(H′kR

−1
k Hk) change.

(a) (b) (c) (d)

Figure 6.3: Local localizability map comparisons. In each sub-figure, the ground
truth localizability map is shown in the left column. The predicted localizability map
using our approach is shown in the right column. The same color scheme that is used
in Figure 6.2 is applied here.

localizability map, which is a representation of λ(H′kR
−1
k Hk), for planning under

uncertainty problems using a 2D occupancy grid map.

To train a neural network for solving such problem, we generate localizability

maps using the approach introduced in [148]. To obtain the value of λ(H′kR
−1
k Hk)

148

(a) Path library (b) Valid paths

Figure 6.4: Using a pre-computed path library for efficient and aggressive navigation.
In (a), a path library generated using the dynamic model of a ground robot. In (b),
valid paths after incorporating the obstacle information. Grey areas are traversable.
Red areas are non-traversable.

for a cell in the localizability map, we first simulate a laser scan using a model of the

lidar and the surrounding map. We then repeatedly translate/rotate the scan by a

random transformation within a threshold. At last, we register the transformed scan

to the map and obtain the converged registration covariance. This covariance will

be treated as R. We repeat this process for every cell in the map. Representative

examples of localizability maps are shown in Figure 6.1.

Then we train a network that is described in Chapter 5. The inferred localiz-

ability map for Willow Garage is shown in 6.2. The 2D occupancy grid map of Willow

garage is shown on the left. The ground truth localizability map that is obtained by

calculating λ(H′kR
−1
k Hk) using the exhaustive approach for each cell is shown in the

middle. The predicted localizability map is shown on the right. Note that calculation

of the ground truth localizability map takes 27.7 hours on a computer that is equipped

with i9-9900k CPU with multi-threading enabled. The inferred localizability map us-

149

ing the proposed approach only takes 1.7 seconds on a computer that is equipped with

a Titan RTX GPU. Representative local localizability map comparisons are shown in

Figure 6.3.

6.2.2 Aggressive Navigation for UGVs

Another direction for future work is enabling aggressive navigation for UGVs in out-

door environments. Similarly to the approach proposed in [149], we can generate a

path library for a UGV based on its dynamic model. Creating such a path library

may alleviate the computational burden that is encountered when using sampling-

based planning algorithms. When using such a path library for motion planning, we

only need to incorporate the new map information and prune the paths that are in

collision with obstacles. This approach may be especially suitable for UGVs that are

only equipped with limited computational resources or need to traverse aggressively

in a cluttered environment.

150

Bibliography

[1] T. Shan and B. Englot, “Sampling-based minimum risk path planning in mul-

tiobjective configuration spaces,” in IEEE Conference on Decision and Control

(CDC), pp. 814–821, IEEE, 2015.

[2] B. Englot, T. Shan, S. D. Bopardikar, and A. Speranzon, “Sampling-based min-

max uncertainty path planning,” in IEEE Conference on Decision and Control

(CDC), pp. 6863–6870, IEEE, 2016.

[3] T. Shan and B. Englot, “Belief roadmap search: Advances in optimal and

efficient planning under uncertainty,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 5318–5325, IEEE, 2017.

[4] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar

odometry and mapping on variable terrain,” in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 4758–4765, IEEE, 2018.

[5] T. Shan, J. Wang, B. Englot, and K. Doherty, “Bayesian generalized kernel

inference for terrain traversability mapping,” in Conference on Robot Learning,

pp. 829–838, 2018.

[6] I. M. Mitchell and S. Sastry, “Continuous path planning with multiple con-

straints,” in IEEE International Conference on Decision and Control (CDC),

vol. 5, pp. 5502–5507, IEEE, 2003.

[7] O. Castillo, L. Trujillo, and P. Melin, “Multiple objective genetic algorithms

for path-planning optimization in autonomous mobile robots,” Soft Computing,

vol. 11, no. 3, pp. 269–279, 2007.

151

[8] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial poten-

tial fields and their application in real time robot path planning,” in Proceedings

of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 256–263, IEEE,

2000.

[9] P. Hansen, “Bicriterion path problems,” in Multiple criteria decision making

theory and application, pp. 109–127, Springer, 1980.

[10] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks,

vol. 14, no. 1, pp. 95–116, 1984.

[11] E. Q. V. Martins, “On a multicriteria shortest path problem,” European Journal

of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[12] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for multiple

robots having independent goals,” IEEE Transactions on Robotics and Au-

tomation, vol. 14, no. 6, pp. 912–925, 1998.

[13] Z. Clawson, X. Ding, B. Englot, T. A. Frewen, W. M. Sisson, and

A. Vladimirsky, “A bi-criteria path planning algorithm for robotics applica-

tions,” arXiv preprint arXiv:1511.01166, 2015.

[14] X. D. Ding, B. Englot, A. Pinto, A. Speranzon, and A. Surana, “Hierarchical

multi-objective planning: From mission specifications to contingency manage-

ment,” in IEEE International Conference on Robotics and Automation (ICRA),

pp. 3735–3742, IEEE, 2014.

[15] L. Kavraki, P. Svestka, and M. H. Overmars, “Probabilistic roadmaps for

path planning in high-dimensional configuration spaces,” IEEE Transactions

on Robotics and Automation, 1994.

152

[16] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[17] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7,

pp. 846–894, 2011.

[18] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information

gathering algorithms,” The International Journal of Robotics Research, vol. 33,

no. 9, pp. 1271–1287, 2014.

[19] S. D. Bopardikar, B. Englot, and A. Speranzon, “Multiobjective path plan-

ning: Localization constraints and collision probability,” IEEE Transactions on

Robotics, vol. 31, no. 3, pp. 562–577, 2015.

[20] B. D. Luders and J. P. How, “An optimizing sampling-based motion planner

with guaranteed robustness to bounded uncertainty,” in American Control Con-

ference, pp. 771–777, IEEE, 2014.

[21] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion plan-

ning under uncertainty,” in IEEE International Conference on Robotics and

Automation (ICRA), pp. 723–730, IEEE, 2011.

[22] J. Kim, R. A. Pearce, and N. M. Amato, “Extracting optimal paths from

roadmaps for motion planning,” in IEEE International Conference on Robotics

and Automation (ICRA), vol. 2, pp. 2424–2429, IEEE, 2003.

[23] L. I. R. Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli, and D. Rus,

“Incremental sampling-based algorithm for minimum-violation motion plan-

153

ning,” in IEEE Conference on Decision and Control (CDC), pp. 3217–3224,

IEEE, 2013.

[24] D. Devaurs, T. Siméon, and J. Cortés, “Efficient sampling-based approaches to

optimal path planning in complex cost spaces,” in Algorithmic Foundations of

Robotics XI, pp. 143–159, Springer, 2015.

[25] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on

configuration-space costmaps,” IEEE Transactions on Robotics, vol. 26, no. 4,

pp. 635–646, 2010.

[26] Y. Gao, S.-d. Sun, and D.-f. He, “Global path planning of mobile robot based on

particle filter,” in WRI World Congress on Computer Science and Information

Engineering, vol. 3, pp. 205–209, IEEE, 2009.

[27] A. Soltani and T. Fernando, “A fuzzy based multi-objective path planning of

construction sites,” Automation in Construction, vol. 13, no. 6, pp. 717–734,

2004.

[28] F. Guo, H. Wang, and Y. Tian, “Multi-objective path planning for unre-

stricted mobile,” in IEEE International Conference on Automation and Lo-

gistics, pp. 1046–1051, IEEE, 2009.

[29] Q. Zhang, I. Rekleitis, and G. Dudek, “Uncertainty reduction via heuristic

search planning on hybrid metric/topological map,” in Conference on Computer

and Robot Vision, pp. 222–229, IEEE, 2015.

[30] D. Meger, I. Rekleitis, and G. Dudek, “Heuristic search planning to reduce

exploration uncertainty,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 3392–3399, IEEE, 2008.

154

[31] H. Yang, J. Lim, and S.-e. Yoon, “Anytime rrbt for handling uncertainty and

dynamic objects,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 4786–4793, IEEE, 2016.

[32] B. Luders, M. Kothari, and J. How, “Chance constrained rrt for probabilistic

robustness to environmental uncertainty,” in AIAA guidance, navigation, and

control conference, p. 8160, 2010.

[33] B. D. Luders, S. Karaman, and J. P. How, “Robust sampling-based motion

planning with asymptotic optimality guarantees,” in AIAA Guidance, Naviga-

tion, and Control (GNC) Conference, p. 5097, 2013.

[34] D. Lenz, M. Rickert, and A. Knoll, “Heuristic search in belief space for mo-

tion planning under uncertainties,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 2659–2665, IEEE, 2015.

[35] R. Takei, W. Chen, Z. Clawson, S. Kirov, and A. Vladimirsky, “Optimal control

with reset-renewable resources,” arXiv preprint arXiv:1110.6221, 2011.

[36] S. D. Bopardikar, B. Englot, and A. Speranzon, “Multi-objective path planning

in gps denied environments under localization constraints,” in American Control

Conference, pp. 1872–1879, IEEE, 2014.

[37] W. Stadler, “Fundamentals of multicriteria optimization,” in Multicriteria Op-

timization in Engineering and in the Sciences, pp. 1–25, Springer, 1988.

[38] T. L. Veith, M. L. Wolfe, and C. D. Heatwole, “Optimization procedure for

cost effective bmp placement at a watershed scale 1,” JAWRA Journal of the

American Water Resources Association, vol. 39, no. 6, pp. 1331–1343, 2003.

155

[39] C. Sun, S. G. Ritchie, K. Tsai, and R. Jayakrishnan, “Use of vehicle signature

analysis and lexicographic optimization for vehicle reidentification on freeways,”

Transportation Research Part C: Emerging Technologies, vol. 7, no. 4, pp. 167–

185, 1999.

[40] A. Engau and M. M. Wiecek, “Generating ε-efficient solutions in multiobjec-

tive programming,” European Journal of Operational Research, vol. 177, no. 3,

pp. 1566–1579, 2007.

[41] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods

for engineering,” Structural and Multidisciplinary Optimization, vol. 26, no. 6,

pp. 369–395, 2004.

[42] M. J. Rentmeesters, W. K. Tsai, and K.-J. Lin, “A theory of lexicographic

multi-criteria optimization,” in IEEE International Conference on Engineering

of Complex Computer Systems, pp. 76–79, IEEE, 1996.

[43] G. D. Self, “Multicriterion optimization in engineering with fortran programs,”

1987.

[44] F. Waltz, “An engineering approach: hierarchical optimization criteria,” IEEE

Transactions on Automatic Control, vol. 12, no. 2, pp. 179–180, 1967.

[45] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and

S. Thrun, “Principle of robot motion: Theory, algorithms, and application,”

2005.

[46] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space

by factoring the covariance,” The International Journal of Robotics Research,

vol. 28, no. 11-12, pp. 1448–1465, 2009.

156

[47] S. D. Bopardikar, B. Englot, A. Speranzon, and J. Van Den Berg, “Robust

belief space planning under intermittent sensing via a maximum eigenvalue-

based bound,” The International Journal of Robotics Research, vol. 35, no. 13,

pp. 1609–1626, 2016.

[48] M. Stilman, “Task constrained motion planning in robot joint space,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 3074–3081, IEEE, 2007.

[49] K. Shi, J. Denny, and N. M. Amato, “Spark prm: Using rrts within prms

to efficiently explore narrow passages,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 4659–4666, IEEE, 2014.

[50] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Maprm: A probabilistic

roadmap planner with sampling on the medial axis of the free space,” in ICRA,

pp. 1024–1031, 1999.

[51] J. Denny, E. Greco, S. Thomas, and N. M. Amato, “Marrt: Medial axis biased

rapidly-exploring random trees,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 90–97, IEEE, 2014.

[52] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based

rapidly-exploring random tree,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 895–900, IEEE, 2006.

[53] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based rrt to

deal with complex cost spaces,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 4120–4125, IEEE, 2013.

157

[54] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-

based feedback motion-planning under motion uncertainty and imperfect mea-

surements,” The International Journal of Robotics Research, vol. 33, no. 2,

pp. 268–304, 2014.

[55] R. Pepy, M. Kieffer, and E. Walter, “Reliable robust path planner,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 1655–1660, IEEE, 2008.

[56] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path

planning for robots with motion uncertainty and imperfect state information,”

The International Journal of Robotics Research, vol. 30, no. 7, pp. 895–913,

2011.

[57] W. Burgard, O. Brock, and C. Stachniss, The Stochastic Motion Roadmap:

A Sampling Framework for Planning with Markov Motion Uncertainty. MIT

Press, 2008.

[58] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-based

algorithm for stochastic optimal control,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 2865–2872, IEEE, 2012.

[59] H. Kurniawati and V. Yadav, “An online pomdp solver for uncertainty planning

in dynamic environment,” in Robotics Research, pp. 611–629, Springer, 2016.

[60] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor

fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606,

International Society for Optics and Photonics, 1992.

158

[61] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in 3dim,

vol. 1, pp. 145–152, 2001.

[62] Y. Chen and G. Medioni, “Object modelling by registration of multiple range

images,” Image and Vision Computing, vol. 10, no. 3, pp. 145–155, 1992.

[63] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” vol. 2, no. 4, p. 435,

2009.

[64] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,

P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon, “Kinectfusion: Real-

time dense surface mapping and tracking,” vol. 11, no. 2011, pp. 127–136, 2011.

[65] A. Nüchter, “Parallelization of scan matching for robotic 3d mapping,” in Eu-

ropean Conference on Mobile Robots, 2007.

[66] D. Qiu, S. May, and A. Nüchter, “Gpu-accelerated nearest neighbor search

for 3d registration,” in International Conference on Computer Vision Systems,

pp. 194–203, Springer, 2009.

[67] D. Neumann, F. Lugauer, S. Bauer, J. Wasza, and J. Hornegger, “Real-time

rgb-d mapping and 3-d modeling on the gpu using the random ball cover data

structure,” in IEEE International Conference on Computer Vision Workshops

(ICCV Workshops), pp. 1161–1167, IEEE, 2011.

[68] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning informative

point classes for the acquisition of object model maps,” in International Con-

ference on Control, Automation, Robotics and Vision, pp. 643–650, IEEE, 2008.

159

[69] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and pose

using the viewpoint feature histogram,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 2155–2162, IEEE, 2010.

[70] Y. Li and E. B. Olson, “Structure tensors for general purpose lidar feature

extraction,” in IEEE International Conference on Robotics and Automation

(ICRA), pp. 1869–1874, IEEE, 2011.

[71] J. Serafin, E. Olson, and G. Grisetti, “Fast and robust 3d feature extraction

from sparse point clouds,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4105–4112, IEEE, 2016.

[72] M. Velas, M. Spanel, and A. Herout, “Collar line segments for fast odometry

estimation from velodyne point clouds,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 4486–4495, IEEE, 2016.

[73] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “Seg-

match: Segment based place recognition in 3d point clouds,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 5266–5272, IEEE,

2017.

[74] M. Bosse and R. Zlot, “Keypoint design and evaluation for place recognition in

2d lidar maps,” Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1211–

1224, 2009.

[75] R. Zlot and M. Bosse, “Efficient large-scale 3d mobile mapping and surface

reconstruction of an underground mine,” in Field and Service Robotics, pp. 479–

493, Springer, 2014.

160

[76] B. Steder, G. Grisetti, and W. Burgard, “Robust place recognition for 3d range

data based on point features,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 1400–1405, IEEE, 2010.

[77] W. S. Grant, R. C. Voorhies, and L. Itti, “Finding planes in lidar point clouds for

real-time registration,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4347–4354, IEEE, 2013.

[78] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time,” in

Robotics: Science and Systems, vol. 2, p. 9, 2014.

[79] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,”

Autonomous Robots, vol. 41, no. 2, pp. 401–416, 2017.

[80] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3354–3361, IEEE, 2012.

[81] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2d slam tech-

niques available in robot operating system,” in IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6, IEEE, 2013.

[82] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya, “Autonomous

navigation using a real-time 3d point cloud,” in Australasian Conference on

Robotics and Automation, pp. 1–3, 2010.

[83] A. Rönnau, G. Liebel, T. Schamm, T. Kerscher, and R. Dillmann, “Robust

3d scan segmentation for teleoperation tasks in areas contaminated by radia-

tion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2419–2424, IEEE, 2010.

161

[84] Y. Tanaka, Y. Ji, A. Yamashita, and H. Asama, “Fuzzy based traversability

analysis for a mobile robot on rough terrain,” in IEEE International Conference

on Robotics and Automation (ICRA), pp. 3965–3970, IEEE, 2015.

[85] A. Chilian and H. Hirschmüller, “Stereo camera based navigation of mobile

robots on rough terrain,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4571–4576, IEEE, 2009.

[86] D. Gingras, T. Lamarche, J.-L. Bedwani, and É. Dupuis, “Rough terrain re-

construction for rover motion planning,” in Canadian Conference on Computer

and Robot Vision, pp. 191–198, IEEE, 2010.

[87] I. Bogoslavskyi, O. Vysotska, J. Serafin, G. Grisetti, and C. Stachniss, “Efficient

traversability analysis for mobile robots using the kinect sensor,” in European

Conference on Mobile Robots, pp. 158–163, IEEE, 2013.

[88] S. Kuthirummal, A. Das, and S. Samarasekera, “A graph traversal based algo-

rithm for obstacle detection using lidar or stereo,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3874–3880, IEEE,

2011.

[89] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, and

M. Raibert, “Autonomous navigation for bigdog,” in IEEE International Con-

ference on Robotics and Automation (ICRA), pp. 4736–4741, IEEE, 2010.

[90] M. Brunner, B. Brüggemann, and D. Schulz, “Hierarchical rough terrain mo-

tion planning using an optimal sampling-based method,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 5539–5544, IEEE, 2013.

162

[91] J. Sock, J. Kim, J. Min, and K. Kwak, “Probabilistic traversability map genera-

tion using 3d-lidar and camera,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 5631–5637, IEEE, 2016.

[92] S. Zhou, J. Xi, M. W. McDaniel, T. Nishihata, P. Salesses, and K. Iagnemma,

“Self-supervised learning to visually detect terrain surfaces for autonomous

robots operating in forested terrain,” Journal of Field Robotics, vol. 29, no. 2,

pp. 277–297, 2012.

[93] K. Zimmermann, P. Zuzanek, M. Reinstein, and V. Hlavac, “Adaptive

traversability of unknown complex terrain with obstacles for mobile robots,” in

IEEE international conference on robotics and automation (ICRA), pp. 5177–

5182, IEEE, 2014.

[94] À. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-Cetto, “Ter-

rain classification in complex three-dimensional outdoor environments,” Journal

of Field Robotics, vol. 32, no. 1, pp. 42–60, 2015.

[95] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile robots

in outdoor environments: A semi-supervised learning approach based on 3d-

lidar data,” in IEEE International Conference on Robotics and Automation

(ICRA), pp. 3941–3946, IEEE, 2015.

[96] J. Ahtiainen, T. Stoyanov, and J. Saarinen, “Normal distributions transform

traversability maps: Lidar-only approach for traversability mapping in outdoor

environments,” Journal of Field Robotics, vol. 34, no. 3, pp. 600–621, 2017.

[97] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point clouds:

Motion planning, trajectory optimization, and terrain assessment in generic

163

nonplanar environments,” Journal of Field Robotics, vol. 34, no. 5, pp. 940–

984, 2017.

[98] M. Liu and R. Siegwart, “Navigation on point cloud - a riemannian met-

ric approach,” in IEEE International Conference on Robotics and Automation

(ICRA), pp. 4088–4093, IEEE, 2014.

[99] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart, “3d path planning

and execution for search and rescue ground robots,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 722–727, IEEE, 2013.

[100] S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte, “Gaussian pro-

cess modeling of large-scale terrain,” Journal of Field Robotics, vol. 26, no. 10,

pp. 812–840, 2009.

[101] V. Guizilini and F. Ramos, “Variational hilbert regression with applications to

terrain modeling,” in International Symposium on Robotics Research (ISRR),

2017.

[102] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep learn-

ing for single image super-resolution: A brief review,” IEEE Transactions on

Multimedia, 2019.

[103] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6,

pp. 1153–1160, 1981.

[104] C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal of Applied

Meteorology, vol. 18, no. 8, pp. 1016–1022, 1979.

164

[105] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional net-

work for image super-resolution,” in European Conference on Computer Vision,

pp. 184–199, Springer, 2014.

[106] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5197–5206, 2015.

[107] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional network

for image super-resolution,” in IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 1637–1645, 2016.

[108] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueck-

ert, and Z. Wang, “Real-time single image and video super-resolution using

an efficient sub-pixel convolutional neural network,” in IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1874–1883, 2016.

[109] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image

super-resolution using a generative adversarial network,” in IEEE Conference

on Computer Vision and Pattern Recognition, pp. 4681–4690, 2017.

[110] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

Neural Information Processing Systems, pp. 2672–2680, 2014.

[111] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in IEEE Conference on Computer Vision and Pattern Recognition,

pp. 770–778, 2016.

165

[112] Y. Zhang and T. Funkhouser, “Deep depth completion of a single rgb-d image,”

in IEEE Conference on Computer Vision and Pattern Recognition, pp. 175–185,

2018.

[113] F. Ma, L. Carlone, U. Ayaz, and S. Karaman, “Sparse sensing for resource-

constrained depth reconstruction,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 96–103, IEEE, 2016.

[114] J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical image process-

ing: Fast depth completion on the cpu,” in Conference on Computer and Robot

Vision (CRV), pp. 16–22, IEEE, 2018.

[115] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-dense:

self-supervised depth completion from lidar and monocular camera,” arXiv

preprint arXiv:1807.00275, 2018.

[116] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction without

the sensors: Leveraging structure for unsupervised learning from monocular

videos,” arXiv preprint arXiv:1811.06152, 2018.

[117] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth

estimation with left-right consistency,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition, pp. 270–279, 2017.

[118] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper

depth prediction with fully convolutional residual networks,” in International

Conference on 3D vision (3DV), pp. 239–248, IEEE, 2016.

[119] N. Smolyanskiy, A. Kamenev, and S. Birchfield, “On the importance of stereo

for accurate depth estimation: An efficient semi-supervised deep neural network

166

approach,” in IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 1007–1015, 2018.

[120] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point cloud

upsampling network,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2790–2799, 2018.

[121] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature

learning on point sets in a metric space,” in Advances in Neural Information

Processing Systems, pp. 5099–5108, 2017.

[122] A. Gelb, Applied optimal estimation. MIT press, 1974.

[123] Y. Okamoto and H. J. Maris, “A novel algorithm for calculation of the extreme

eigenvalues of large hermitian matrices,” Computer Physics Communications,

vol. 76, no. 2, pp. 191–202, 1993.

[124] D. J. Webb and J. Van Den Berg, “Kinodynamic rrt*: Asymptotically opti-

mal motion planning for robots with linear dynamics,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 5054–5061, IEEE, 2013.

[125] D. Fox, “Adapting the sample size in particle filters through kld-sampling,” The

international Journal of robotics research, vol. 22, no. 12, pp. 985–1003, 2003.

[126] M. Himmelsbach, F. V. Hundelshausen, and H.-J. Wuensche, “Fast segmen-

tation of 3d point clouds for ground vehicles,” in IEEE Intelligent Vehicles

Symposium, pp. 560–565, IEEE, 2010.

[127] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmentation of

sparse 3d laser scans for online operation,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pp. 163–169, IEEE, 2016.

167

[128] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,

“isam2: Incremental smoothing and mapping using the bayes tree,” The Inter-

national Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[129] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” vol. 3, no. 3.2, p. 5,

2009.

[130] W. R. Vega-Brown, M. Doniec, and N. G. Roy, “Nonparametric bayesian infer-

ence on multivariate exponential families,” in Advances in Neural Information

Processing Systems, pp. 2546–2554, 2014.

[131] A. Melkumyan and F. T. Ramos, “A sparse covariance function for exact gaus-

sian process inference in large datasets,” in International Joint Conference on

Artificial Intelligence, 2009.

[132] K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided 3-d occupancy

mapping with bayesian generalized kernel inference,” IEEE Transactions on

Robotics, 2019.

[133] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-

source multi-robot simulator,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), vol. 3, pp. 2149–2154, IEEE, 2004.

[134] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

168

[135] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning,” in International Conference on

Machine Learning, pp. 1050–1059, 2016.

[136] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science

& Business Media, 2012.

[137] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Driving in the matrix: Can virtual

worlds replace human-generated annotations for real world tasks,” in IEEE

International Conference on Robotics and Automation (ICRA), pp. 746–753,

2017.

[138] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An

open urban driving simulator,” Conference on Robot Learning, 2017.

[139] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical Image

Computing and Computer-assisted Intervention, pp. 234–241, Springer, 2015.

[140] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[141] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in International Conference on Machine Learning, pp. 807–

814, 2010.

[142] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Wein-

berger, “Pseudo-lidar from visual depth estimation: Bridging the gap in 3d

object detection for autonomous driving,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 8445–8453, 2019.

169

[143] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-

tomap: An efficient probabilistic 3d mapping framework based on octrees,”

Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[144] F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration and map-

ping for mobile robots via deep reinforcement learning,” in AIAA Scitech 2019

Forum, p. 0396, 2019.

[145] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” In-

ternational Conference on Learning Representations, 2014.

[146] F. Chollet et al., “Keras: The python deep learning library,” Astrophysics

Source Code Library, 2018.

[147] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale ma-

chine learning,” in 12th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 16), pp. 265–283, 2016.

[148] R. Schirmer, P. Biber, and C. Stachniss, “Efficient path planning in belief

space for safe navigation,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pp. 2857–2863, IEEE, 2017.

[149] J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-cap: Pre-computed

alternative paths to enable aggressive aerial maneuvers in cluttered environ-

ments,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pp. 8456–8463, IEEE, 2018.

170

Vita

Tixiao Shan

Education

• Stevens Institute of Technology, Ph.D., Mechanical Engineering, 2014-2019

• Shanghai University, M.S., Mechanical Electronics Engineering, 2011-2014

• Qingdao University, B.S., Mechanical and Electrical Engineering, 2007-2011

Research Experience

• Research Assistant, Stevens Institute of Technology, 2014-2019

• Assistant Engineer Intern, ABB Engineering Ltd., 2013-2014

• Research Assistant, Shanghai University, 2012-2014

Teaching Experience

• Intro to Robotics, Stevens Institute of Technology, 2017-2019

• Control Systems, Stevens Institute of Technology, 2017-2019

• Engineering Design, Stevens Institute of Technology, 2018-2019

• Systems Laboratory, Stevens Institute of Technology, 2016

• CAD and CAM, Shanghai University, 2012

Publications

• F. Chen, J. Wang, T. Shan, and B. Englot, “Autonomous Exploration Under

Uncertainty via Graph Convolutional Networks,” International Symposium on

Robotics Research, 2019.

171

• J. Wang, T. Shan, and B. Englot, “Virtual Maps for Autonomous Exploration

with Pose SLAM,” IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2019.

• K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided 3D Occupancy

Mapping with Bayesian Generalized Kernel Inference,” IEEE Transactions on

Robotics (T-RO), 2019

• J. Wang, T. Shan, M. Chandrasekaran, T. Osedach, and B. Englot, “Deep

Learning for Detection and Tracking of Underwater Pipelines using Multibeam

Imaging Sonar,” IEEE International Conference on Robotics and Automation

(ICRA) Workshop, 2019

• J. Wang, T. Shan, and B. Englot, “Underwater Terrain Reconstruction from

Forward-Looking Sonar Imagery,” IEEE International Conference on Robotics

and Automation (ICRA), 2019

• F. Chen, S. Bai, T. Shan and B. Englot. “Self-Learning Exploration and Map-

ping for Mobile Robots via Deep Reinforcement Learning.” International AIAA

Information-Driven Decision and Control Conference (AIAA), 2019

• T. Shan, K. Doherty, J. Wang and B. Englot. “Bayesian Generalized Kernel

Inference for Terrain Traversability Mapping.” Conference on Robot Learning

(CoRL), 2018

• T. Shan and B. Englot. “LeGO-LOAM: Lightweight and Ground-Optimized

Lidar Odometry and Mapping on Variable Terrain.” IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 4758-4765, 2018

• T. Shan and B. Englot. “Belief Roadmap Search: Advances in Optimal and

Efficient Planning Under Uncertainty.” IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5318-5325, 2017

• B. Englot, T. Shan, S.D. Bopardikar, and A. Speranzon. “Sampling-based Min-

172

Max Uncertainty Path Planning.” IEEE International Conference on Decision

and Control (CDC), pp. 6863-6870, 2016

• T. Shan and B. Englot. “Sampling-based Minimum Risk Path Planning in Mul-

tiobjective Configuration Spaces.” IEEE International Conference on Decision

and Control (CDC), pp. 814-821, 2015

• T. Shan and B. Englot, “Tunable-Risk Sampling-Based Path Planning Using a

Cost Hierarchy,” IEEE International Conference on Robotics and Automation

(ICRA) Workshop, pp. 2, 2015

Awards

• Fernando L. Fernandez Robotics and Automation Fellowship, 2019

• Stevens Innovation and Entrepreneurship Fellowship, 2014-2017

• China National Scholarship for Graduate Students, 2013

• Shanghai University Outstanding Students, 2013

• Qingdao University Scholarship, 2007-2010

• Qingdao University Outstanding Students, 2008-2010

• Tsingtao Brewery Education Scholarship, 2009

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation and Problem Statement
	Overview and Contributions

	Background
	Multi-Objective Motion Planning
	Weighted Sum Method
	Constraint-based Methods
	Lexicographic Method
	Applications

	Lidar-based Localization
	Traversability Mapping
	Lidar Super-resolution

	Efficient Multi-Objective Planning
	Minimum-Risk Planning
	Problem Definition
	Algorithm Description
	Algorithm Analysis
	Experiments
	Conclusions

	Min-Max Uncertainty Planning
	Problem Definition
	Algorithm Description
	Algorithm Analysis
	Experiments
	Conclusions

	Belief Roadmap Search
	Problem Definition
	The Belief Roadmap Search
	Algorithm Analysis
	Experiments
	Conclusions

	Lightweight Lidar Odometry
	Introduction
	LeGO-LOAM
	Segmentation
	Feature Extraction
	Lidar Odometry
	Lidar Mapping

	Experiments
	Small-Scale UGV Test
	Large-Scale UGV Tests
	Benchmarking Results
	Loop Closure Test using KITTI Dataset

	Conclusions

	Learning-Enhanced Perception
	BGK Inference for Terrain Traversability Mapping
	Introduction
	Technical Approach
	Experiments
	Conclusions

	Lidar Super-resolution
	Introduction
	Technical Approach
	Experiments
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Deep Learning-Accelerated Planning Under Uncertainty
	Aggressive Navigation for UGVs

	Bibliography
	Vita

