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MAPPING, LOCALIZATION, AND NAVIGATION FOR ROBUST

AUTONOMOUS INSPECTION OF INDOOR ENVIRONMENTS WITH

UNMANNED GROUND VEHICLES

ABSTRACT

The need for autonomous infrastructure inspections performed by mobile robots

is becoming increasingly prevalent, to mitigate human error and inspect critical in-

frastructure with increased frequency, while reducing costs. Accurate mapping, local-

ization and navigation are required to perform autonomous inspection tasks in indoor

environments with unmanned ground vehicles (UGVs). Computer vision and precise

manipulator control are necessary for successful handheld sensor interactions. This

dissertation will discuss completed work towards these capabilities.

Occupancy grid maps are used to condense large volumes of sensor data into

manageable and useful data structures for planning and decision-making. Most such

maps only consider three possible states for each grid cell: free, occupied and un-

known. However, occupancy grid maps’ fixed spatial resolution limits their ability

to identify sharp changes in occupancy. We propose a novel multi-resolution occu-

pancy mapping algorithm that uses Bayesian generalized kernel inference to distin-

guish uncertain regions from unknown regions within an occupancy grid, permitting

autonomous inspections to address each category separately.

Reliance on electrical power has become a necessity in many parts of the world.

Maintaining the equipment used for power distribution is critical. Handheld partial

discharge (PD) sensors offer a method for routine inspections to identify degrading

hardware before failure. Multiple steps are required to practically enable a mobile

manipulation robot platform to perform these inspections.
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While simultaneous localization and mapping (SLAM) is effective for navigat-

ing an unknown environment, repetitive inspection tasks are often better-served by

relying on localization relative to a prior, existing map. By registering current LiDAR

data to a global reference map, waypoints assigned to the global frame can be sent

to the robot. A framework for localization using prior LiDAR-derived maps will be

presented, and leveraged within a novel system architecture supporting multi-session

autonomous navigation of a UGV to designated waypoints throughout an indoor

environment of interest.

A unique UGV platform has been developed that incorporates a six degree-

of-freedom manipulator arm with a custom end-effector to interact with a handheld

PD sensor. This integration will be discussed, along with the development and test-

ing of algorithms needed to support its autonomous operations within a substation.

Coordination between the UGV and manipulator arm using their respective sensing

modalities and computing capabilities is required for successful autonomous inspec-

tions. Real-time image processing enables precise localization for robot interactions

with points of interest within the environment. Automated manipulator control and

PD sensor button-pressing interactions are also discussed. With each of these features

implemented, a complete autonomous inspection routine was successfully operated

within an electric substation.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Autonomous mobile robot inspections can reduce human errors, provide significantly

more data at reduced costs and operate in hazardous environments. Inspections take

on many forms depending on the targeted data. Obstacle data in mapping algorithms

are inspections of objects within 3D space, while specialized sensors can take recurring

measurements to track any changes. Repeatable routines are easier to program into

autonomous robotic inspections, therefore this work focuses on rapid robust robotic

inspections.

Autonomous mobile robot exploration uses incomplete information about the

surrounding environment to evaluate a performance metric that prioritizes the gath-

ering of new data. However, the data gathered can be degraded by factors such as

sensor noise and gaps in coverage within the data itself. Recently, predictive oc-

cupancy grid mapping algorithms have been developed to address this issue. Such

inference-based occupancy grid mapping algorithms can successfully filter noise and

fill gaps, while also decreasing the memory required to maintain such data. Simulta-

neous localization and mapping (SLAM) can be used alongside such mapping tools to

curb the localization error that may further exacerbate mapping errors. Given that

there is a metric for exploration using mapping by defining new data, there should

be a method to perform inspections as well based on data gathered.

While predictive mapping has addressed some of the central issues in occupancy

mapping, it has yet to solve a few problematic consequences of applying predictive
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inference in this setting. One example is the over-estimation of free space caused by

glancing rays, for which the gaps between sparse range observations may be filled

with inaccurate predictions of free space. This can lead to incorrect assumptions in

the planning and decision-making processes of robot exploration. The boundaries

between free and occupied space within occupancy grid maps are also often charac-

terized erroneously. Further inspection could also help this issue, however there are

no clear metrics to both begin and end inspection.

Robots have often been programmed for repeatable tasks as each instance

just requires the same code. However, repeatable tasks require some consistency

between attempts. One such consistency is location within an environment. For

unmanned ground vehicles (UGVs) like Clearpath’s Jackal, reliably navigating to

specific waypoints can open up a whole new world of repeatable tasks. For example,

mobile manipulator platforms would be able to perform repeatable manipulation tasks

at specified locations around an environment. However, there are currently no simple

GPS-denied localization methods used with navigation available publicly.

One such repeatable task is currently being researched by our lab. Consoli-

dated Edison Ltd. have requested an autonomous substation inspection routine for

gathering acoustic and transient earth voltage (TEV) measurements on specific panels

that are labeled with barcodes. Mobile manipulation has all the necessary hardware

for completing this task, however there are many steps towards full implementation.

The goals of this dissertation are to optimize occupancy grid mapping while

providing a framework that can be used to separate exploration from inspection as

well as build a unique autonomous inspection routine using a UGV with a LiDAR for

waypoint navigation with a modified manipulator for inspection tasks.

The main contributions of this work are as follows:
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• A novel method to separate the uncertain state from the unknown state while

optimizing occupancy grid mapping [1].

• A robust and rapid method to create global reference maps and use them for

autonomous 2D waypoint navigation with tolerances for dynamic obstacles [2].

• A hardware and software integration between an unmanned ground vehicle and

a robotic manipulator for mobile manipulation in cluttered indoor environments

[3]

• A complete autonomous inspection routine using a PD sensor with a custom

mobile manipulation platform [4]
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Chapter 2

Background

2.1 Components for Autonomous Inspections

2.1.1 Occupancy Maps

Occupancy maps are typically produced from range data. Range data in the most

basic form has a sensor origin linked to each endpoint found during the sensing pro-

cess. One common data structure used to define these endpoints is a point cloud [5].

As the name implies, a point cloud is made up of points within 3D Euclidean space

that are located based on a predetermined frame of reference. Due to their simplic-

ity, point clouds are the default data structure for a wide variety of sensors used for

mapping. The Robot Operating System (ROS) [6] is frequently used to both capture

and visualize point cloud data. Capturing point cloud data can be performed using

real world sensors, or it can be simulated using environments such as Gazebo [7].

However, point cloud data presents a few limitations. Firstly, the data can

be overwhelming in size. A 32-beam lidar can acquire over one million points per

second, which rapidly accumulates when scanning a large environment. Secondly,

there is no native free space representation within the point cloud data structure.

Further computation is necessary to derive free space from each scan. Thirdly, there

is no native representation of obstacle boundaries within a point cloud, and further

computation is required to estimate them. Finally, point cloud data is susceptible to

corruption by noise and other sources of error.

Considering the limitations of point cloud data, researchers have pursued new

data structures to define maps efficiently. A common method in use today is the
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occupancy grid map [8], which discretizes 3D space into voxels with a designated

spatial resolution. By setting a low resolution we can drastically reduce the size of

the data structure, as all points within a given voxel will be tallied together. However,

low resolutions reduce our understanding of the environment. Therefore, a balance is

necessary between memory efficiency and detail.

OctoMap [9], proposed more than a decade ago, continues to be widely used for

memory-efficient 3D occupancy grid mapping. OctoMap is built to take point cloud

data as an input, which is processed into a probabilistic map of free and occupied

cells at a specified spatial resolution. Successors such as UFOMap [10] or the method

described in [11] have been proposed in recent years to optimize both the process of

introducing points into the map, as well as the structure of the map.

Occupancy mapping algorithms often permit cells to be represented at mul-

tiple spatial resolutions within a single map. One method used to achieve this is

called pruning, where newly defined cells belonging to the same class are condensed

into larger, lower-resolution cells. Pruning has been utilized in several mapping algo-

rithms to reduce the map data while maintaining an accurate representation of the

environment [12, 13, 14].

Regardless of the data structure used, sparse data from sensors will, across

some resolutions, result in gaps within an occupancy grid map. These gaps are a

common issue, as the distance between neighboring sensor rays increases the further

an object is from the sensor origin. Therefore, it is often beneficial to implement

predictive mapping techniques to infer the contents of an occupancy map between

such gaps.

However, these maps require accurate localization to be processed correctly.

The errors induced by inaccurate robot localization corrupt the registration of the

point cloud associated with a given range scan. This particular source of error has
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been studied extensively, with the most common remedy being Simultaneous Local-

ization and Mapping (SLAM) [15].

2.1.2 Localization

Mobile robot navigation has been researched extensively to open a pathway for more

advanced tasks. However, navigation requires both localization and environmental

data to make informed decisions. SLAM has been successful at satisfying both of

those requirements. Most SLAM algorithms define a map origin based on the initial

position of the robot when it begins its operations. To perform multi-session tasks,

we need to ensure a common origin is used for each session.

Autonomous ground vehicles rely on accurate pose estimation for navigation

[16, 17]. While there are many methods for performing pose estimation [18], sim-

plifying the task down to a common sensor type reduces the complexity. LiDAR

sensors provide enough data for localization with comparative algorithms. Manag-

ing thousands of data points from each scan can be daunting from a computational

complexity standpoint, however there are methods to reduce the complexity such as

semantic labeling. This approach labels and groups a subset of point cloud data to-

gether to appear as a single entity, thereby significantly reducing the overall number

of comparisons. Using semantics and Random Sample Consensus (RANSAC), [19]

performs stable and accurate pose estimation while eliminating dynamic obstacles

from comparisons. Semantic modeling can be a powerful tool for pose estimation as

proved in [20], which solved global localization by registering a single LiDAR scan

overlapped with a camera to a reference map using segmentation and neural network

training. Localization can be performed by focusing on one semantic object class

while attaining high accuracy in handling the surrounding data [21].

Two forms of multi-session SLAM persist in mobile robotics research. The first
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expands the boundaries of a previously defined map [22], while the second revisits

the same location from a previous map, where the environment may have changed

[23]. Real world environments are not static, which requires maps to be updated from

time to time for accurate localization. Therefore, there needs to be some tolerance

for robots to use prior maps with outdated information, by either having enough

static points of reference on a prior map or updating a prior map during each session.

One example of enough reference data is the work produced by Labbe et al. [24]

in illumination invariant visual SLAM, where distinctly different visual references

are capable of localizing successfully. Another method separates changes between

the current map and the prior [25]. Other researchers prefer to update the global

reference map such as Zhao et al. [26], who acknowledge active environment changes

such as new stores within a mall should be manageable.

Prior maps can be built from many different data sources. One helpful source

is 3D models constructed using computer aided design (CAD). Building Information

Models can also be used to generate maps for both geometric and semantic localization

[27]. Not many real world structures have complete 3D models, however a 3D mesh

can be approximately generated from a 2D floorplan for precise robot localization

[28]. 3D models of real world environments work well in scenarios where the models

already exist. For scenarios that begin with a completely unknown environment, the

goal of this work is to provide an easy-to-deploy alternative solution.

2.1.3 Navigation

While consistent localization through pose estimation is required for multi-session

waypoint navigation, environments are rarely static. One method to handle this

is ignoring data unrelated to localization. Indoor artificial landmarks such as fidu-

cial markers can be placed in an environment where other features may change [29].



8

Visual teach and repeat methods [30, 31] allow for repeated navigation without lo-

calization which can function even under seasonal environmental changes [32, 33].

However, robust localization methods can sometimes handle large static changes in

the environment.

2.2 Hardware

Mobile robots have been used for many inspection, maintenance and repair tasks and

come in many forms to optimize the tasks being performed. In just the energy sector

alone, hundreds of robots have been designed for such tasks [34]. One special platform

that has the potential to address a multitude of tasks using the same hardware is

the mobile manipulation robot. Mobile manipulation requires two main hardware

components: a base vehicle that can navigate throughout an environment, and a

manipulator that can intervene in the environment.

Mobile manipulation has been around for more than 30 years [35] [36] as an

autonomous solution for tasks commonly performed by people. However, many tasks

have specific hardware requirements to be accomplished, which has resulted in an

abundance of mobile manipulation platforms. Larger mobile manipulators such as the

Centauro [37], EL-E [38], or Care-O-bot [39] are designed for retrieval and carrying

tasks, while smaller options such as Stretch [40], Omnivil [41], and youBot-a [42] often

focus more on interaction with a limited environment. The trend focuses on stability,

where larger bases can use larger manipulators, while smaller bases are drastically

limited in their manipulation capabilities.

Many robotics teams have built custom mobile manipulation platforms, with

varied applications in mind. In this dissertation, we describe a platform built to

have a small footprint for use within a busy indoor environment, while still being
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able to access a large manipulator workspace. For that purpose, Clearpath’s Jackal

Unmanned Ground Vehicle (UGV) was chosen for the base. Less than two feet in each

dimension, this UGV can navigate through busy corridors as easily as a person would.

Our Jackal is equipped with a Velodyne VLP-16 “puck” LiDAR, commonly used for

mapping and localization. The Kinova Gen3 6-DOF robotic arm was chosen as the

manipulator for its 891mm reach, wrist-mounted RGB-D camera, and customizable

wrist interface.

The complete mobile manipulation architecture described in this dissertation

offers an alternative to prior work by incorporating a long reaching manipulator,

multiple sensing modalities, and a base that can navigate through cluttered indoor

environments effectively. In the following sections, the hardware and software archi-

tectures are described first. Two key performance capabilities are then reviewed for

compatibility with the platform, including a confirmation that no degradation of indi-

vidual subsystems occurs. Finally, recommendations are included for further studies

of the platform.

2.3 Autonomous Inspection

The complex task of autonomous inspection has been studied extensively for many

years such as oil pipeline inspections [43] or construction inspection [44] to more

modern tasks such as underwater structure inspection [45] and damage type visual

inspections [46]. As summers become hotter and our reliance on electricity increases,

frequent inspections will become increasingly necessary to reduce outages. Therefore,

electric substation inspection robots are being developed [47] to safely manage the

anticipated rise in demand.

Methods vary for robotic substation inspection. Computer vision has been
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utilized on mobile robots to read analog sensor measurements remotely [48]. Rail

mounted inspection robots can correct their pose adaptively to ensure successful in-

spections [49]. AI is also used to optimize autonomous mobile inspection robots

[50]. Collaborative data analysis offers a new perspective for autonomous substation

inspections [51]. Outdoor substation inspections require weather independence, in-

cluding in snowy conditions [52]. The characteristics that connect these substation

inspection robots are their ability to navigate through the substation environment

and to collect meaningful data.

The most meaningful data in an inspection varies across different environments.

Past research on electric distribution substation inspections has pursued methods for

identifying potential failures before they occur, using transient earth voltage (TEV)

and acoustic measurements [53] or creating an entire condition monitoring methodol-

ogy [54, 55]. This dissertation offers a method to gather acoustic and TEV measure-

ments from switchgear panels autonomously using a mobile manipulation platform

in a low-clearance indoor environment. Specifically, the work that follows focuses on

inspecting pothead compartments as a representative test case.

Localization is important for autonomous inspection. While the base vehicle

of our mobile manipulation platform can localize using lidar within a global refer-

ence frame, making physical contact with precise locations, via visual localization,

is also necessary to perform successful inspections. There are many methods to lo-

calize objects of interest using computer vision [56], requiring both detection and

classification.

While there are many custom solutions for localization using computer vision,

some inspection tasks require using the least intrusive methods possible. The partial

discharge (PD) sensor used in this work scans a barcode on a square sticker which can

be placed in a reasonable location within the environment. Rather than including a
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separate localization method, barcode detection was considered ideal. Many options

are available for barcode identification, such as the python package OpenCV. The

underlying algorithm used by OpenCV is based on directional coherence and looks

for patches of high gradient orientation coherence with similar gradient directions.

After some filtering, the final result is bounded by a minimum rectangular area to

output the corners of the barcode. However, this would only work in ideal conditions,

with limited glare and minimal curvature of the barcode. Other methods have been

proposed to handle more difficult scenarios [57].

Robotic manipulation has varied over the years as the hardware has changed

significantly, resulting in different planning and control methods [58]. Early work

offered methods to plan trajectories based on simple one degree-of-freedom robots [59].

Higher complexity from more degrees of freedom introduced sampling based motion

planners, such as those using rapidly exploring random trees (RRT) [60, 61, 62].

Robotic manipulation can be performed as either absolute positioning using joint

angles or relative positioning typically in Cartesian space. Absolute positioning can be

as simple as understanding the current position through encoders and simply moving

each joint to the desired final angle. Relative motion, however, requires more complex

control. Control methods have been built for Cartesian motion planning using neural

networks [63], optimization [64] and model predictive control [65]. Extensions to these

motion planners include obstacle avoidance [66] and safe human-robot interactions

[67]. This dissertation will focus on a few effective methods for Cartesian motion

without requiring these extensions.
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Chapter 3

Improving Obstacle Boundary Representations in Predictive Occupancy

Mapping

Figure 3.1: Example of the proposed algorithm mapping a column in an underground
mine, with free space outside the column shown in gray.

3.1 Assumptions

In this section, we will focus on errors that derive from additive noise in the sensing

process itself, which is frequently assumed to be Gaussian [68], but can take on other
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characteristics. We will assume our robot’s state is fully observable.

3.1.1 Learning-Aided Occupancy Mapping

There are many methods for predicting the missing contents of 3D occupancy grid

maps, however the majority of them frame occupancy mapping as a supervised learn-

ing problem. Gaussian processes have been widely used for this purpose, and they can

accommodate a variety of kernel functions; of particular note is their compatibility

with a sparse covariance function intended for exact inference over large datasets [69].

In most learning-aided mapping approaches, predicting the occupancy probability of

cells not directly observed by sensor rays is influenced by the proximity of existing

data to the query point. Each scan from a sensor can be interpreted as a set of “hit

points” that define occupied regions and sensor rays that define free space.

Probabilistic inference can also address noise and other sources of uncertainty

in occupancy mapping. Warped Gaussian processes [70] and Rao-Blackwellized par-

ticle filters [71] can account for the localization uncertainty captured by SLAM, while

accurately representing occupancy probabilities across a grid map. Occupancy grid

mapping has also been made more compatible with the map corrections required by

SLAM in [72], where previous sensor observations are moved within an occupancy

map as SLAM corrections are made. Due to the added expense of keeping track of

all sensor observations so they can be moved if necessary, the majority of inference-

based occupancy mapping algorithms, including ours, assume a robot’s localization

is accurate, but that its range sensor is noisy.

Many occupancy mapping algorithms use Gaussian Processes (GPs) to infer

the missing contents of gaps caused by sensor inadequacies [13, 73, 74, 75, 76]. Due

to the computational complexity of GPs, Bayesian generalized kernel (BGK) [77]

inference has been proposed as an efficient alternative technique for applying Bayesian
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nonparametric inference to occupancy grid maps [12, 14]. Other inference methods

that address the poor scalability of GPs include integral kernels [78], Markov random

field ray propagation [79], Hilbert maps [80, 81], Hilbert maps with deep learning [82],

decomposable radial kernels [83], confidence rich grid mapping [84], and a method that

employs spherical cells rather than voxels [85].

Another recently proposed approach uses the agreement/disagreement of nearby

sensor observations to respectively stretch or compress the kernel [86]. The adaptive

kernel inference mapping algorithm (AKIMap) assumes the gaps between sensor ob-

servations to be a greater source of inaccuracy than sensor noise. Accordingly, the

AKIMap algorithm achieves gap-filling by expanding the kernel’s influence toward

similar occupancy states and compressing the kernel’s influence away from dissimilar

occupancy states.

3.1.2 Free Space Representation

One aspect of occupancy grid mapping that distinguishes it from other classification

problems is the typical use of three classes to categorize the contents of map cells:

free, occupied, and unknown. To frame occupancy mapping as a binary classification

problem amenable to solution by supervised learning algorithms, several learning-

aided occupancy mapping algorithms focus specifically on classifying occupied cells,

with the opposite class simply being “not occupied”. Such algorithms typically do

not quantify the accuracy with which free space can be predicted, focusing instead

on the accuracy with which obstacles are mapped [73, 74, 75, 79].

Predictive occupancy mapping algorithms that classify free space adopt a va-

riety of approaches to interpreting a robot’s range sensor observations. The most

common method is to define an evenly spaced distribution of points between the sen-

sor origin of a range scan and the “hit point” at the end of each sensor ray, which



15

are interpreted to be sensor observations of free space [13, 14, 76, 78, 84]. AtomMap

[85] also adopts this approach, but along the portion of a ray close to the hit point,

it computes the normal to the nearby obstacle surface and produces two more free

cells normal to the surface. Another method to define observations of free space is to

randomly sample points between the sensor origin and the hit point of a ray. This

approach requires certain attributes within the algorithm, such as kernel stretching

to account for sparsity among the data, but was utilized by [80, 81, 86]. Guo et al.

[83] used a Poisson distribution along each ray.

A final method for defining observations of free space is to utilize the sensor rays

themselves, rather than representing free space observations using points. Both GP

Occupancy Mapping (GPOM) [73] and BGKOctoMap-L [12] do this successfully by

using the point-to-line distance, i.e., the shortest distance between a point of interest

and a given sensor ray, to define a single free space observation contributed by that ray

in the evaluation of a given query point. By adopting this approach, BGKOctoMap-L

is able to mitigate the over-sampling of free space that would otherwise result from

high-resolution interpolation along each sensor ray.

3.1.3 Unknown & Uncertain Representation

The third classification commonly used in occupancy grid mapping, unknown, typi-

cally applies to cells that have not yet been observed by a robot’s sensor. In this paper,

we will argue that predictive occupancy mapping benefits from two separate types of

unknown classification: the standard definition of unknown in which insufficient data

has been procured about a given region, and uncertain, where conflicting data makes

accurate classification of map cells challenging. Although it has not been labeled

as the uncertain class previously in predictive inference-based occupancy mapping,

several previous algorithms have captured what they define as the unknown class, ap-
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plying it when there is conflicting data. However, a few algorithms created methods

to define unknown as missing data.

By explicitly defining free space, [11] was able to infer unknown cells as those

remaining in the map apart from the cells classified as occupied and free. This

“leftover” method is widely used in occupancy grid mapping, by which all map cells

are defined to be unknown at the start of a mapping exercise, until sensor rays pass

through them or near them, and they are gradually eliminated and replaced by free

and occupied cells.

Another method to define unknown in occupancy mapping was proposed by

Jadidi et al. [87], in which two separate maps are generated and then fused together.

The first map estimates occupied and not occupied classes, while the second map

estimates free and not free classes. When the two maps are merged together, the

resulting map contains free and occupied cells contributed by each component map,

and the remaining cells are categorized as unknown. This merging method originally

encountered problems with overestimation or underestimation of a given class due to

the selected kernel functions being applied to separate inference problems in isolation.

A revised method was later proposed to solve this issue in [88], by merging the two

component maps into a unique continuous occupancy map. Although most mapping

algorithms ignore under- and over-estimation of the free and occupied classes, we aim

to make an improvement specifically to address that issue. Additionally, in the sec-

tions that follow, we will describe a methodology to suitably define both unknown and

uncertain classes separately within a predictive occupancy map, to achieve descriptive

and accurate inference.
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3.2 Bayesian Generalized Kernel Inference

3.2.1 Counting Sensor Model

Our proposed algorithm is structured similarly to the BGKOctoMap-L framework

proposed by a subset of the authors, in [12]. Therefore, we make similar assumptions

about our workspace, where measurements are defined as Y = {y1, . . . , yN | yi ∈

{0, 1}} and the values are assigned based on whether the measurements are a ray or

hit point, which represent free space and occupied space respectively. Each yi ∈ Y

has a corresponding location denoted as X = {x1, . . . , xN | xi ∈ R3}, such that all

N range measurements can be described fully in the form of the tuple (xi, yi). Map

cells are also assumed to be indexed by j ∈ Z+.

However, our proposed algorithm, BGKOctoMap-LV, differs from the the prior

work in the way we define the occupancy of a map cell. In [12], each cell was given a

probability of occupancy defined by θj with Bernoulli likelihood

p(yi | θj) = θyij (1− θj)
1−yi , (3.1)

where the posterior function p(θj | X ,Y) was used to estimate occupancy. This

function was obtained using a conjugate prior, where θj was assumed to be a Beta

distribution, resulting in the following occupancy estimator and variance:

E[θj] =
αj

αj + βj

(3.2)

V[θj] =
αj βj

(αj + βj)2(αj + βj + 1)
(3.3)

The hyperparameters αj and βj were defined to simplify the joint measure-
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ment likelihood of each cell. Observations are only added to the “counts” of these

parameters if they fall within the region Rj that influences cell j.

αj := α0 +
∑

i, xi ∈ Rj

yi (3.4)

βj := β0 +
∑

i, xi ∈ Rj

(1− yi). (3.5)

By this definition, αj represents the total count of hit points within region Rj,

while βj is the total number of occurrences of rays passing through the same region

Rj. Each term also has a prior defined by α0 and β0.

In that previously used estimation procedure, θj is assumed to have a Beta

distribution. However, for simplification, we instead assume a Bernoulli distribution.

We also define a new parameter for each cell j to be the occupancy state mj ∈ {0, 1},

which follows from the definition of measurements yi, where 0 represents the free or

unoccupied state while 1 is defined as occupied. This distribution’s probability mass

function can leverage the same αj and βj parameters described previously.

P (mj) =



αj

αj + βj

, if mj = 1

βj

αj + βj

, if mj = 0

0, otherwise

(3.6)

With this new distribution we can estimate occupancy and the variance of oc-

cupancy. We will use the term µj to describe the occupancy estimate in the equations

below.
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E[mj] =
∑

mj={0,1}

mj p(mj) =
αj

αj + βj

= µj (3.7)

V[mj] =
∑

mj={0,1}

(mj − µj)
2p(mj) =

αj βj

(αj + βj)2
(3.8)

The expected value of mj is equal to that of the Beta distribution θj, which

suggests a reasonable assumption when using the new Bernoulli distribution. How-

ever, while the variance estimates are similar, they vary enough to create unique

perspectives. The variance of a Beta distribution will tend to zero as more data is

captured, even when αj and βj are equal. The variance of a Bernoulli distribution,

however, will lie at a maximum when αj = βj, regardless of how much data has been

gathered, serving our goal of using map cell variance to characterize uncertain cells

with conflicting observations.

3.2.2 Free Space using Rays

Using continuous rays permits an accurate representation of free space, and avoids the

potential pitfalls of interpolating along a ray to generate evenly spaced free points

from the sensor origin to a hit point. If the free points are discretized too finely,

multiple free points will land within individual map cells, outweighing the influence

of hit points. If they are discretized too coarsely, cells along a ray may have no points

introduced into them, even though a sensor ray has passed through. These problems

can be avoided by using the ray itself to represent free space, rather than interpolated

points.

Our prior work on BGKOctoMap-L [12] used a continuous ray from the sensor

origin to the hit point to define free space, where each map cell only sees the influence

of the nearest point on each range beam. The nearest point was found by searching
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along the length of the ray using the following equations:

xfree =



P, if δ < 0

P + δ

−→
PQ

|PQ|
, if 0 < δ < 1

Q, if δ > 1

(3.9)

δ =

−→
PQ ·

−−→
Px∗

|PQ|
, (3.10)

where P is the sensor origin, Q is the hit point, and x∗ is the map cell center. When a

map cell lies behind the origin of a ray, the nearest point will be P , whereas if a map

cell lies beyond the end of the ray, the nearest point will be Q. However, if the map

cell occurs somewhere between P and Q within 3D space, then the nearest point will

be determined using δ. These assumptions are also adopted in BGKOctoMap-LV.

3.2.3 Kernel Estimation

While the discretization provided by occupancy grid maps is useful in many respects,

it can also reduce the accuracy and precision captured by the underlying sensor data.

Therefore, we assume there is a smooth distribution of sensor data over any given map

cell which can be considered a region of influence around each cell. BGKOctoMap-

L uses the following sparse kernel to assume a distribution from a cell center [69]:

k(x, x′) = 
σ

[
2+cos(2π d

l
)

3
(1− d

l
) + 1

2π
sin(2π d

l
)

]
if d < l

0 if d > l

, (3.11)

where d = ∥ x − x′ ∥ is the distance between a map cell’s center x and a nearby

sensor observation x′. A constant hyperparameter σ is used to define the strength of
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Figure 3.2: An illustrative example of the sparse kernel function (Eq. 3.11) with a
variety of values for σ and l.
The region of influence Rj around a cell j is based on the value of l, while σ defines

the strength of that influence.

influence while l declares the size of the region of influence. As seen in Figure 3.2,

when d is small the influence on the predicted occupancy of a map cell will be largest.

This procedure for prediction dictated by spatial proximity can improve the accuracy

of occupancy map estimation, using relevant data from outside a cell’s boundaries to

influence its classification.

Equations (3.4) and (3.5) describing the counting sensor model must be up-

dated to incorporate the above kernel function. In those equations, yi represents the

observations of occupancy from the incoming data, such that a hit point will have

yi = 1 while a ray passing only through free space will have yi = 0.

αj := α0 +
N∑
i=1

k(xj, xi)yi (3.12)
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βj := β0 +
N∑
i=1

k(xj, xi)(1− yi) (3.13)

Equations (3.12) and (3.13) are used by BGKOctoMap-L and define the in-

fluence of range sensor observations on the classification of occupancy map cells.

However, there are two other states in our newly proposed variant of this algo-

rithm, unknown and uncertain. Unknown has typically been assumed to apply when

mj = 0.5± ϵ for some small ϵ, however, the current equation (3.7) for expected value

will return mj ≈ 0.5 for all instances where αj ≈ βj, even when αj and βj are very

large and the state of cell j should be uncertain. Therefore, new classifications will be

introduced in BGKOctoMap-LV, both to account for unknown cells, and to separately

define cells containing conflicting information as uncertain.

3.3 Introducing New Classes into BGKOctoMap-L

3.3.1 Defining and Weighting the Unknown Classification

The unknown classification represents regions of a robot’s workspace that are yet to

be explored. Even when some initial exploration has occurred, a map cell may still be

considered partly unknown. Therefore, we propose to incorporate pseudo-evidence

into our estimation procedure via a threshold for the unknown classification. Above

that threshold, a cell’s contents are assumed to be observed, and it must be designated

occupied, free or uncertain. To ensure that unknown is only counted when αj and βj

are small, we define a threshold wMIN such that:

wj =


wMIN if αj + βj < wMIN

αj + βj otherwise

(3.14)
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The unknown classification is assumed to apply when mj = 0.5, therefore, we

will assume that there is pseudo-evidence γj corresponding to this class, in the same

way that αj accounts for occupied space and βj accounts for free space. Based on our

threshold wMIN , we can make the assumption that wj = αj + βj + γj, which means

we can solve for γj given that we know the other three terms. However, now we

need to modify the probability mass function and update the occupancy and variance

equations used in our proposed estimation process.

P (mj) =



αj

αj + βj + γj
, if mj = 1

γj
αj + βj + γj

, if mj = 0.5

βj

αj + βj + γj
, if mj = 0

0, otherwise

(3.15)

With this new distribution we can update our estimates for occupancy and the

variance of occupancy accordingly.

E[mj] =
∑

mj∈{0,0.5,1}

mj p(mj) =
αj + 0.5γj
αj + βj + γj

= µj (3.16)

V[mj] =
∑

mj∈{0,0.5,1}

(mj − µj)
2p(mj) =

αj βj + 0.25(αj + βj)γj
(αj + βj + γj)2

(3.17)

When γj = 0, we can see that Equation (3.16) reverts back to Equation (3.7),

which considered only free/occupied classes. Including γj via the wMIN term will not

change the final state of a cell’s occupancy, but will produce a result that includes

unknown when αj +βj < wMIN . However, this particular equation still allows for the

probability of occupancy to be in the unknown range when αj ≈ βj, even for large
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values. To separate unknown from uncertain, we define a new estimator to push the

probability of occupancy to 1 or 0 as γj shrinks:

Ê[mj] =



αj + 0.5γj
αj + γj

if αj ≥ βj

0.5γj
βj + γj

if αj < βj

(3.18)

In typical applications of occupancy grid mapping, the majority consensus of

the sensor observations that land within a map cell will dictate whether that cell is

labeled free or occupied. Following the same philosophy, Equation (3.18) checks the

consensus of past sensor observations, and then pushes the occupancy probability

toward the corresponding class. As γj eventually approaches 0 with the exploration

of a robot’s workspace, a cell’s occupancy probability will approach 1 or 0, indicating

that its contents are no longer unknown.

3.3.2 Defining the Uncertain Classification

Unfortunately the threshold wMIN does not address the issue that αj ≈ βj should

represent uncertainty when they are large, indicating disagreement among sensor

observations. There are a few methods capable of dealing with this issue, such as

assigning more weight to newer data than to old data [89]. However, our proposed

solution allows us to push the probability of occupancy to its upper and lower limits

while also allowing the occupancy probability to flip from occupied to free and vice

versa without nearing unknown.

We update the variance equation (3.17) based on Equation (3.18), as we need
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to use µj, which yields:

V̂[mj] =



(α2
j + αjγj)(4βj + γj) + βjγ

2
j

4(αj + γj)2(αj + βj + γj)
if αj ≥ βj

αj(4β
2
j + 4βjγj + γ2

j ) + βjγj(βj + γj)

4(βj + γj)2(αj + βj + γj)
if αj < βj

(3.19)

When γj >> αj, βj, we can see both forms of variance converge asymptotically to 1
γj
,

which indicates our starting variance when wMIN >> α0, β0. Therefore, if wMIN is

sufficiently large, resulting in a large quantity of pseudo-evidence indicating unknown,

the starting variance will be small.

However, when γj = 0, the new variance equation simplifies:

V̂′[mj] =



βj

αj + βj

if αj ≥ βj

αj

αj + βj

if αj < βj

(3.20)

Known cells will be updated according to this equation. While Eq. (3.20) is different

from the traditional variance shown in Eq. (3.8), we can still use this as an uncertainty

metric, as it usefully captures the proportionality of the lesser observation count to

the total observation count.

We do not apply the “pushing to extremity” premise of Equation (3.18) to

a map cell’s variance, as that would result in the variance dropping to zero once

αj + βj > wMIN , reducing the information we have to describe the occupancy of that

cell and our confidence in its prediction.
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3.3.3 Free Space Representation from Sensor Data
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Figure 3.3: An illustrative comparison of occupancy representations. The left shows
training data while the right shows the inference result. From top to bottom: (1)
point-to-line distance kernel evaluation used in BGKOctoMap-L, (2) reducing the
length of glancing rays to minimize overestimation of free space, (3) combining re-
duced glancing rays and the proposed occupancy predictions from Eq. (3.18).
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Rays beginning at the sensor and ending at a hit point are used to define a robot’s

observations of free space. Due to the nature of range observations radiating at fixed

angles from a sensor origin, the free space around the sensor will be more densely

represented with data than the surrounding obstacles observed at various hit points.

Additionally, with their continuous representation, the free observations along a ray

are likely to be closer to a given query point than the single hit point at the end of

the ray. Therefore, overestimation of free space occurs if there are no checks in place

to avoid it.

In particular, glancing rays, occurring nearly tangential to an obstacle surface,

can be a problematic cause of overestimation in predictive occupancy mapping. When

using such rays to estimate free space, it is possible to erroneously define free space

inside obstacles, as seen at the top of Figure 3.3. On the left of the Figure we can

see the true environment, and at right some of the resulting errors introduced into an

occupancy map. When rays are nearly tangential to an obstacle wall, part of the wall

is assumed to be free space in the resulting map, even with a small standoff from the

ray. This is caused by unbiased inference over the contents of the sensor ray, which

weighs free space more heavily than occupied space.

To reduce overestimation of free space, the proposed algorithm reduces the

length of a ray based on nearby hits. To reduce the ray length, we search within the

ray’s region of influence for any hits that occur closer to the sensor origin than the

hit at the end the ray. If a hit is found, the ray length is shortened to that distance.

While this is an exhaustive search, there are a few ways to minimize computational

complexity.

By reducing the length of glancing rays passing nearly tangent to nearby ob-

stacles, we are able to minimize the overestimation of free space when the available

data is sparse. This procedure complements our proposed Equation (3.18) for updat-
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ing occupancy probabilities, which forces occupancy probability toward the free and

occupied classes. Figure 3.3 shows the resulting estimation of occupancy probability

from a single range scan. At the bottom of Figure 3.3, the border between free and

occupied is sharp, well-defined, and can quickly adapt to the arrival of new observa-

tions, unlike previous mapping methods. Map variance is not included in this figure,

as the map only visualizes the occupancy probabilities.

3.4 Algorithm Summary

Two key updates to BGKOctoMap-L have been proposed, and their implementation

is discussed in this section. The first reduces the length of glancing rays, augmenting

the training data that will be subsequently used to infer occupancy. This method

requires the initial training data X ,Y , which contain the positions and occupancy of

the raw sensor data. When yi ∈ Y is equal to 1, the corresponding state xi ∈ X is

considered occupied, and when yi = 0, the corresponding state is free.

The ray-shortening procedure is summarized in Algorithm 1. To shorten free

space rays−→oxi, which are defined between the sensor origin and a hit, we must compare

all rays against all hit points in the current point cloud on which the map is based.

After computing the nearest point on the ray to a given occupied point x
′
i on line

7, the minimum distance between the ray and point is calculated. If the distance

calculated is less than the influence distance l, then there is an overlap between the

ray and occupied point, which would ordinarily result in overestimation of free space.

To mitigate overestimation of free space, the ray is reduced each time a new occupied

point is found within its region of influence. This process occurs repeatedly, where

the ray and thus its region of influence is updated each time d < l, ensuring that the

ray is reduced as far as necessary and the search order does not matter.
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Algorithm 3.1: Reducing Free-Space Training Data

Data: Training data: X ,Y ; Origin: o
1 Function trim training data(X ,Y, o):
2 for each (xi, yi) ∈ (X ,Y) do
3 if yi = 0 then
4 Define −→oxi ray

5 for each (x
′
i, y

′
i) ∈ (X ,Y) do

6 if y
′
i = 1 then

7 Compute xfree from Eq. (3.9) using x
′
i as x∗

8 d = ∥xfree − x
′
i∥

9 if d < l from Eq. (3.11) then
10 xi ← reduce ray(−→oxi, x

′
i)

By only changing the input data and the way we process cell data, we are able

to continue to use the same inference procedure as BGKOctoMap-L, summarized in

Algorithm 2. The objective to compute the posterior parameters given observations

X and Y remains the same. However, the input data has been altered per Alg. 1,

reducing the length of the rays where needed to avoid free-space overestimation. Also

unlike BGKOctoMap-L, the posterior data α and β are updated per Eqs. (3.14)-(3.19)

to predict both occupancy and the variance of occupancy.

As described earlier, the proposed BGKOctoMap-LV algorithm will use Equa-

tion (3.18) to solve for expected occupancy and (3.19) to solve for variance. While

the equations themselves differ, the structure of the algorithm remains the same as

the BGKOctoMap-L algorithm. However, these changes alter the way cell states

are defined. Cells are defined as unknown if the expected occupancy lies within the

range between the occupied and free thresholds, typically a range of [0.5− ϵ, 0.5+ ϵ].

By pushing the occupancy values to their extremes, we can predict the contents of

newly discovered cells early and never revert back to unknown. Using Eq. (3.19)

for variance, the uncertain state was created by defining a variance threshold. When
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Algorithm 3.2: Bayesian Generalized Kernel (BGK) Inference

Data: Training data: X ,Y ; Query point: x∗
1 Function BGK(X ,Y, x∗):
2 for each (xi, yi) ∈ (X ,Y) do
3 if yi = 0 then
4 Compute x̂i ← xfree from Eq. (3.9)
5 else
6 x̂i ← xi

7 ki ← k(x∗, x̂i) Sparse kernel, Eq. (3.11)
8 α∗ ← α∗ + kiyi
9 β∗ ← β∗ + ki(1− yi)

10 return α∗, β∗

the variance is above that threshold, regardless of expected occupancy, the state is

considered uncertain.

3.5 Experimental Results

Using OctoMap [9] as a baseline, we compare our proposed algorithm, BGKOctoMap-

LV1, against other inference-based maps including Gaussian Process OctoMaps (GPOc-

toMap) [13], the original learning-aided Bayesian generalized kernel map (BGKOctoMap-

L) [12], and a newer framework for adaptive kernel inference (AKIMap) [86]. While

these algorithms differ in many ways, a few key components were kept constant

throughout our tests. The range of known occupancy states was separated into two

regions, known free and known occupied. Known free was declared to be the region

of occupancy where p = Ê[mj] ≤ 0.3 while the known occupied region was defined by

0.7 ≤ p = Ê[mj] for all algorithms.

GPOctoMap, BGKOctoMap-L and our proposed variant BGKOctoMap-LV all

use variance thresholds to define unknown and uncertain occupancy states. Due to

1The code for this paper is implemented in a branch of the Learning-aided 3D Mapping Library,
available at https://github.com/RobustFieldAutonomyLab/la3dm/tree/feature/bgklv.
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(a) Environment
Model

(b) Point Cloud (c) OctoMap (d) GPOctoMap

(e) BGKOctoMap-L (f) AKIMap (g) BGKOctoMap-LV

Figure 3.4: Results from using the same Structured map used in [12] and [86] to test
mapping inference on rectangular obstacles.

(a) Environment
Model

(b) Point Cloud (c) OctoMap (d) GPOctoMap

(e) BGKOctoMap-L (f) AKIMap (g) BGKOctoMap-LV

Figure 3.5: Results from using the same Unstructured map used in [12] and [86] to
test mapping inference on curved obstacles.

the uniqueness in how variance is treated among each separate algorithm, they all

required different values for their thresholds. The values used for our tests can be

found in Table 3.1. A few other parameters were kept constant during all our testing

for BGKOctoMap-L and the proposed BGKOctoMap-LV. Namely, the beta prior
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parameters α0 and β0 were assigned very small values to assume virtually no prior

information about the environment. To ensure fairness in the results and follow the

same process, wMIN was assigned a very small value as well, resulting in minimal

usage of the unknown class when evaluating the accuracy of map predictions.

Parameter Description Value Algorithms

occ thresh Occupancy Threshold 0.7 All

free thresh Free Threshold 0.3 All

var thresh Variance Threshold
0.02 GP
0.15 BGK-L
0.2 BGK-LV

α0, β0 Beta Prior Parameters 0.001 BGK-L/BGK-LV

wMIN Unknown Prior Parameter 0.001 BGK-LV

Table 3.1: List of parameters which are the same in all tests performed

Similar to past comparisons [12, 13, 14], two simulated datasets were utilized

with known ground truth to check each algorithm for accuracy. The first environ-

ment was “structured” with predominantly rectangular features, while the second

environment was “unstructured” and contained cylindrical objects surrounded by a

rectangular perimeter. Both of these datasets have virtually no overlapping point

cloud data, which challenges inference-based algorithms using sparse data.

However, accuracy is not the only way to compare inference-based mapping

algorithms. Rather, how effective the inference-based algorithms are at parsing sparse

data into a reasonable representation of the environment should also be checked. To

do so, we used data captured from our own Jackal ground robot of the Strataspace

mine in Louisville, KY using a VLP-16 Lidar. Lidar sensors result in very dense

data, therefore to rigorously compare inference capabilities, we artificially sparsified

the data by downsampling the incoming point clouds.

Each test was performed on a desktop with an 8-core 3.60 GHz Intel i9 CPU

with 16 threads running Ubuntu Linux. Every algorithm was run via the Robot
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Operating System (ROS) [6] and utilized the Point Cloud Library (PCL) [5].

3.5.1 Simulated Data

Both the structured and unstructured environments are 10.0 × 7.0 × 2.0 m in size,

with twelve non-overlapping range scans provided as input. Only the cells that are

seen in Figs. 3.4 and 3.5 were used to evaluate the accuracy of each algorithm. The

colored cells indicate the known occupied state while the gray cells indicate the known

free state. Both unknown and uncertain cells were not considered for the purpose of

plotting the receiver operating characteristic (ROC) curves, to accurately capture this

mapping scenario as a binary classification problem.

Figure 3.6: ROC curves for the Structured Map
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Figure 3.7: ROC curves for the Unstructured Map

To ensure consistency in the data, each algorithm used 0.1m resolution without

any pruning. Various other parameters used specifically for this simulated mapping

test can be found in Table 3.2. Each of the parameters used was either tuned to

approximately optimize the performance of each algorithm, or were defined by their

original authors as the default values. In particular, the free sample resolution used

by BGKOctoMap-L was set to maximize the known free cells, while minimizing the

losses incurred by the known occupied cells when the data conflicts. Both the GPOc-

toMap and BGKOctoMap-LV algorithms were able to use any value less than or

equal to the kernel length values for their free sample resolutions. The kernel length

and scale values used were the default values for that respective resolution. As the
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BGKOctomap-LV algorithm was based on BGKOctomap-L [12], we used the same

default values for our kernel length and scale. These were chosen based on previ-

ous experiments, where larger kernel lengths led to excessive homogeneity within the

maps, while the scale changed how quickly the unknown cells disappear.

Parameter Description Value Algorithms

resolution Resolution 0.1m All

ds resolution Down-sample Resolution 0.1m All

block depth Block Depth 1 All

free resolution Free Sample Resolution
0.1m GP/BGK-LV
0.85m BGK-L

l Kernel Length
1.0m GP
0.2m BGK-L/BGK-LV

σ0 Kernel Scale
1.0 GP
0.1 BGK-L/BGK-LV

Table 3.2: List of parameters used in the simulated mapping tests

Receiver operating characteristic (ROC) curves were used to check each algo-

rithm for its accuracy with respect to each environment. Only the known free and

known occupied cells shown in Figs. 3.4 & 3.5 were used in the ROC curves, resulting

in Figs. 3.6 & 3.7 respectively. The ROC curve of the structured environment shows

how the proposed algorithm BGKOctoMap-LV has comparable accuracy to new tech-

niques such as AKIMap and makes improvements on the prior BGKOctoMap-L. The

same conclusion can be drawn from the ROC curve describing the unstructured en-

vironment. Thus we believe that the accuracy of the proposed algorithm is sufficient

for use in the field.

3.5.2 Lidar Mapping Experiments

We collected VLP-16 lidar data from the Strataspace mine in Louisville, KY to com-

pare predictive mapping algorithms2. The subset of the data we selected for these

2A video showing the process of each mapping algorithm performing on this data is available at
https://youtu.be/VTUc4lQ2en4.
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Parameter Description Value Algorithms

resolution Resolution 0.2m All

ds resolution Down-sample Resolution 0.5m All

max range Maximum Sensing Range 30m All

block depth Block Depth
4 GP
5 BGK-L
6 BGK-LV

free resolution Free Sample Resolution
0.1m GP/BGK-LV
6.5m BGK-L

l Kernel Length
1.0m GP
0.6m BGK-L/BGK-LV

σ0 Kernel Scale
1.0 GP
0.1 BGK-L/BGK-LV

Table 3.3: List of parameters used in the mine tests

experiments resulted in a 130 × 130 × 7 m environment. To necessitate the use of

predictive mapping, the point cloud data was sparsified, downsampling the original

scans to 0.5m leaves. Without downsampling, the data was so dense that all maps

performed similarly.

While map accuracy is important, it often ignores some defining features of

a “good” map. For instance, a map may have very high accuracy, but only define

two or three cells as occupied or free. Other factors need to be taken into account

when considering what defines a “good” map, such as coverage. In a live experiment,

point cloud data is often gathered very quickly and not every scan can be utilized if

a mapping algorithm wishes to perform in real-time. However, not all scans are nec-

essary if there is sufficient overlap. Therefore the frequency at which a map updates

is important to mapping effectively. Another useful metric is how much pruning has

occurred. Funk et al. in [11] prove that successful pruning can be used to speed up

motion planning. When more pruning occurs, fewer cells are used to cover the same

volume.

The data structure used by GPOctoMap, BGKOctoMap-L and BGKOctoMap-
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Algorithm Block
Depth

Total Coverage
(m3)

Average Cell
Size

Average Update
Frequency (Hz)

OctoMap N/A 38382 0.0296 3.27

Akimap N/A 35364 0.0080 2.24

GPOctoMap

1 28827 0.0080 0.91
2 37083 0.0434 2.39
3 42699 0.0872 3.73
4 43749 0.0806 2.63
5 18034 0.0259 0.07
6 1031 0.0144 <0.01

BGKOctoMap-L

1 7862 0.0080 1.19
2 18153 0.0253 3.32
3 25229 0.0331 5.54
4 31386 0.0407 5.05
5 35956 0.0488 2.73
6 32159 0.0444 0.59

BGKOctoMap-LV

1 33796 0.0080 0.13
2 38451 0.0342 0.61
3 38928 0.0508 0.86
4 38932 0.0536 0.83
5 38911 0.0543 0.72
6 38326 0.0544 0.51

Table 3.4: Varying block depth to decide which to use for lidar mapping experiments

LV has limitations on its pruning capabilities. “Blocks” are defined as a set of neigh-

boring cells, where block depth is a parameter used to define how many cells exist

within a given block. Each increase in block depth is equivalent to another level of

possible pruning, however there is also increased computational complexity as block

depth increases. Due to the direct link between block depth and how much pruning

can occur, each algorithm was tested at differing block depths over the same subset

of the mine data used to compare all the algorithms later. Comprehensive testing

resulted in the data shown in Table 3.4, where the largest feasible block depth is

emboldened and used in the final experimental results. The lower update frequen-

cies at block depths one and two are a result of being unable to fully utilize the

multi-threaded functionality of each algorithm at those depths.

Besides block depth, which was varied for these experiments, the remaining
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parameters were kept constant; all values are summarized in Table 3.3. The resolution

was set to 0.2m due to the size of the environment used. That resolution size resulted

in our choice for down-sample resolution, which affected the kernel characteristic

length used by BGKOctoMap-L and BGKOctoMap-LV. The kernel length dictates

how far away from a cell we should consider data to be influential, thus the kernel

length must be larger than the down-sample resolution. However, the value chosen

for the two BGKOctoMap algorithms was still not as large as the one used by the

GPOctoMap algorithm, which was left at the default value.

OctoMap and AKIMap do not explicitly use block depth, thus they were pa-

rameterized separately. AKIMap has no pruning system in place and was left that

way for these tests. OctoMap does have a pruning function, but it can perform that

function without the data structure built via block depth used by the GP and BGK

algorithms, which allowed OctoMap to heavily prune free space in this experiment

without depth parameterization.

Coverage is the sum total of the volume defined by known free and known

occupied cells. Average cell size is the coverage divided by the total number of cells

defined by known free and occupied. The average update frequency was calculated

by finding the total number of maps published by each algorithm over the course of

the dataset, and dividing by the full duration of the dataset. While all algorithms

were fastest at block depth three, more pruning occurred at larger block depths.

Therefore, the metric for choosing which block depth to use for each algorithm was

based primarily on total coverage. GPOctoMap had the most coverage at block depth

four, while BGKOctoMap-L had the most coverage at block depth five. The coverage

decreased when the algorithms were too slow to process enough lidar scans, resulting

in missed data. BGKOctoMap-LV used block depth 6 due to the increase in average

cell size with a minimal loss of coverage.
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(a) Point Cloud (b) OctoMap

(c) GPOctoMap (d) BGKOctoMap-L

(e) AKIMap (f) BGKOctoMap-LV

Figure 3.8: Each mapping algorithm was tested using the same lidar dataset collected
from an underground limestone mine. Lidar odometry was employed while mapping
to minimize drift. To help visualize the data, we only show data below z = 3m. Gray
cells indicate free space, while colored cells indicate occupied space. The color change
of occupied cells indicates their height.
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Most of these algorithms operated successfully around the 2-3Hz range while

the proposed algorithm managed to succeed at > 0.5Hz. While more processing is

required, BGKOctoMap-LV achieved accurate inference over the incoming data. Our

proposed algorithm did not see much of a decrease in processing time as block depth

increased, because incoming data was processed using a different method which is no

longer an exponential function of block depth, which differs from previous algorithms.

GPOctoMap and BGKOctoMap-L used the size of a block to partition incoming data

into sets, which became superfluous at larger block depths. For smaller block depths,

that system improved processing speeds, which was necessary for GPOctoMap to run

in real-time by utilizing multi-threading capabilities. By comparison, the proposed

BGKOctoMap-LV algorithm defines sets of incoming data for each map cell, regardless

of block size, which allows us to successfully utilize larger block depths. The difference

can be seen by the drop from 2.63Hz to 0.07Hz as GPOctoMap goes from block depth

four to five. Similar behavior occurs as BGKOctoMap-L goes from block depth five to

six, where the average update frequency drops from 2.73Hz to 0.59Hz. Our proposed

algorithm, BGKOctoMap-LV, does not change as drastically as block depth increases,

with the worst case from block depth five to six resulting in a 0.21Hz decrease in

processing speed.

While GPOctoMap produced a very large average cell size at both block depth

three and four, the data may be misleading. GPOctoMap performed with strong

inference capabilities, producing a much smoother representation of the environment.

When such smoothing occurs, very few smaller cells remain as most are pruned,

being merged together with their similar neighbors. This behavior actually reduces

the accuracy of certain real-world features, such as bumpy surfaces or protrusions.

However, those same features would decrease the average cell size of a completely

accurate occupancy grid map. Therefore, even though it seems GPOctoMap is vastly
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outperforming at lower block depths, the map produced is likely to under-perform in

path planning exercises compared to the larger block depths used by BGKOctoMap-L

and BGKOctoMap-LV.

Using the parameters shown in Table 3.3, each algorithm was tested over the

data visualized in Fig. 3.8a. The point cloud data was not range-limited, showing

more than what was utilized by each mapping algorithm. Color is used to indicate

height, with red indicating the top and blue the bottom. For ease of visualization,

each point was given a non-zero size. All of the images in Fig. 3.8 were truncated at

a height of 3m to better illustrate how each algorithm inferred free space. However,

when testing each block depth, we did not impose a cutoff height.

Each algorithm accurately captured the global characteristics of the mine, with

some aliasing occurring in the AKIMap image due to its lack of pruning. By map-

ping everything at the finest available resolution, AKIMap produced thin obstacle

boundaries and far too many map cells to permit rapid path planning. OctoMap

performed one task that was implemented into the proposed BGKOctoMap-LV algo-

rithm but does not exist in the inference-based competitors, which is utilizing rays up

to max range from obstacles observed beyond the max range. By utilizing every ray,

OctoMap was able to successfully fill in free space quite effectively even with sparse

data. GPOctoMap was able to capture the majority of free space with the largest

cell size available at the respective block depth used. This is due to its aggressive

inference capabilities, which also resulted in an inflated representation of obstacle

boundaries. BGKOctoMap-L also resulted in inflated obstacle boundaries, however

we believe the cause to be different. The free resolution of BGKOctoMap-L used

for this experiment was quite large, at 6.5m. Free space would be significantly over-

represented if it was not directly curbed. By using such a large value, we were able to

reduce the overestimation of free space while still acquiring an accurate map, which
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can be seen in Figure 3.8d. However, a consequence of curbing free space was the

overestimation of occupied space.

(a) Subset bounded in black (b) OctoMap (c) GPOctoMap

(d) BGKOctoMap-L (e) AKIMap (f) BGKOctoMap-LV

Figure 3.9: For closer inspection, we chose a subset of the mine data that represents
the qualitative performance of each mapping algorithm with our predetermined pa-
rameters, showing how each map defines occupied space, free space, and the boundary
between them. Too much inference results in overestimation, while too little results
in an incomplete representation of the wall.

The proposed BGKOctoMap-LV produced a very rich and well-pruned free

space representation of the mine data. However, this result is not unique to BGKOctoMap-

LV. Therefore, we will zoom in on a subset of the map to better understand the bound-

ary between occupied and free cells. In Fig. 3.9, we inspect a single pillar within the

mine that enables us to more clearly visualize the differences between all algorithms.

OctoMap has gaps in the occupied data due to the lack of inference applied to the

range data. AKIMap performed similarly, likely due to limits on the range of influ-
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ence of sensor data, which was based on its fine resolution. Both GPOctoMap and

BGKOctoMap-L had similarly inflated representations of occupied space, however,

GPOctoMap added thickness atop free space observations, while BGKOctoMap-L

expanded into the free space due to pulling the free space back from the walls. The

proposed algorithm BGKOctoMap-LV resulted in well-defined free space and accu-

rate estimation of occupied space. There are some small gaps in the data between

known free and known occupied cells due to the uncertainty caused by high variance,

however those gaps would be at most a min-resolution cell thick. The proposed algo-

rithm is able to accurately represent the unambiguously free and occupied regions of

the workspace, while capturing uncertainty on the boundary between them.

Reducing the inflated representation of occupied space in BGKOctoMap-LV

may have unexplored benefits. Uneven surfaces, such as those caused by furniture

or certain wall features, are expected to be captured accurately with less generaliza-

tion. One example to consider is a thin wall that is seen from both sides. In the

BGKOctomap-L case, we would expect the wall to be estimated significantly thicker,

as overestimation of occupancy occurs from the wall surface toward the sensor on

each side of the wall. GPOctomap pushes the overestimation behind the surface,

resulting in a more accurate yet still excessively thick wall, where newer data may

fix the currently viewed side of the wall at the cost of expanding the reverse side.

BGKOctomap-LV minimizes this overestimation, resulting in the most accurate rep-

resentation of a thin wall seen from both sides. Thin walls are very common within

indoor environments, which indicates the frequency and potential relevance of this

scenario.
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3.6 Conclusion

In this section, we have proposed BGKOctoMap-LV, enhancing the BGKOctoMap-

L inference-based occupancy grid mapping algorithm to accurately capture known

free, known occupied, unknown, and uncertain states. The framework’s accuracy was

confirmed using simulated mapping scenarios, comparing against recently proposed

algorithms in inference-based occupancy grid mapping, while real lidar data was also

used to qualitatively illustrate their different outcomes intuitively.

We expect a future version of this algorithm to prove useful for exploration

and inspection in 3D environments. Separating uncertain from unknown will allow

us to develop new methods of exploration using inference based mapping that focus

exclusively on the unknown classification and disregard those map cells considered

uncertain, for the purpose of efficiently completing the exploration mission. A differ-

ent approach could utilize both states for a two step exploration and interrogation

method. With the ability to drive down uncertainty without depending on the un-

known classification, mobile robot exploration algorithms could interrogate structures

until they have been completely observed, before continuing to explore.
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Chapter 4

Simplified Multi-Session Robot Navigation using Waypoints

4.1 Problem Description

Mobile robots are often programmed for repeatable tasks, and each instance typically

requires the same code. However, repeatable tasks require consistency between at-

tempts, and localization is an important contributing factor to this consistency. For

unmanned ground vehicles (UGVs) like Clearpath’s Jackal seen in Fig. 4.1, reliable

navigation to specified waypoints can facilitate a wide range of repeatable tasks. For

example, mobile manipulator platforms would be able to perform repeatable grasp-

ing and manipulation tasks at specified locations. However, there are currently no

simple, publicly available localization methods and implementations compatible with

repeated waypoint navigation that incorporate fast map construction from scratch.

4.2 Architecture Description

To ensure accurate waypoint navigation, a global reference map and some method

of performing localization are required. Global reference maps can be composed of

labeled data, such as landmarks, or raw metric data, such as a point cloud. Many

localization methods rely on a specific type of global reference map to perform opti-

mally. SLAM algorithms build global reference maps from scratch.

Our framework uses publicly available packages to create a global reference

map from a prior manual expedition, followed by localization for waypoint navigation

in multi-session tasks. The package we selected for creating a global reference map
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Figure 4.1: Unmaned Ground Vehicle from Clearpath Robotics called Jackal.

was hdl graph slam1 [90] for two main reasons. The SLAM results were successful

even when only LiDAR point cloud data was given, which reduced the requirements

for data collection. There is also a service included that allows users to save a copy

of the completed global map in the correct data type for the subsequent localization

package.

The real-time localization package we chose is a publicly available Iterative

Closest Point (ICP) [91] implementation from ETH Zurich2. With some minor mod-

ifications for our specific systems, their package was able to take an initial position

for the sensor used and accept odometry data for an estimate before performing ICP

localization between an active sensor and the global reference map. With further

testing, this localization method performed well in cases where the sensor had partial

1https://github.com/koide3/hdl graph slam
2https://github.com/leggedrobotics/icp localization
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occlusion, dynamic obstacles moved around, and even when portions of the global

reference map had been changed, such as moved boxes or chairs.

Figure 4.2: Complete architecture of the proposed waypoint navigation package. Pur-
ple boxes represent data that only needs to be handled once. Blue boxes are sent and
received by the robot. Green ellipses show the new packages used by this architecture.

To enable movement with the localization package, a navigation stack was

implemented. The default 2D navigation stack in ROS is the move base3 package.

The full navigation stack includes obstacle avoidance with 2D costmaps and com-

putes collision-free paths from the current position to a global goal using Dijkstra’s

algorithm [92] by default. Once a goal has been set, the navigation stack sends

3http://wiki.ros.org/move base
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velocity commands to the robot until the goal has been reached. The new way-

point navigation4 package we have published includes the complete waypoint naviga-

tion architecture shown in Fig. 4.2, with simulated and real-world example launch

files using a Jackal ground vehicle with a mounted LiDAR. Included in our integration

of the packages shown in Fig. 4.2 is a waypoint publisher script. The current version

of that script accepts 2D goal positions as parameters in a .yaml file, before creating

a list of goal positions. When the node is activated, the goals are published in order

while waiting for the robot to arrive at its current goal. Once the robot has suc-

cessfully arrived, the next goal is published until no further goals remain on the list.

While simple, this script is effective at supporting repeated autonomous navigation

to a series of waypoints.

4.3 Experiments

Multi-session localization for waypoint navigation requires accuracy and precision.

Accuracy can be defined by how close the robot is to the target, while precision

measures the consistency for a given target. As we are using a ground vehicle to

test our localization algorithm, the waypoints will be defined by their 2D Cartesian

coordinates and a quaternion for orientation, wi = (xi, yi, qi) for the ith position of

an ordered list Wn = (w1, w2, . . . , wn) of n waypoints. The Jackal UGV used in our

work is described by its pose sτ = (xτ , yτ , qτ ) at time t = τ .

4.3.1 Simulation Comparisons

The proposed waypoint navigation architecture of Fig. 4.2 was built to be simple to

use and quick to implement. Given the lack of existing localization algorithm im-

plementations that incorporate navigation, the only practical competitor was SLAM,

4https://github.com/RobustFieldAutonomyLab/waypoint navigation
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as implemented to support waypoint navigation in the ROS navigation stack. Many

SLAM algorithm implementations exist within ROS, however the simplest to use is

GMapping [93], the default SLAM framework. Therefore, comparisons were made

with respect to accuracy and precision of waypoint navigation for both GMapping,

and ICP localization (as implemented within our architecture). Simulations were

performed in ROS Noetic with an i9-9900K 3.60GHz CPU and 64GB of RAM. ICP

trials were given 5 minutes to reach completion, while GMapping required 6 minutes

per trial.

Extensive simulations were performed in Gazebo to compare our proposed use

of ICP localization within the architecture of Fig. 4.2 against the conventional usage

of GMapping5 for waypoint navigation within ROS. While a simulated Jackal UGV

manages its state estimation process, the Gazebo simulation environment can provide

ground truth. Therefore, to test for accuracy and precision we recorded the ground

truth state of the robot when navigation to each designated waypoint was completed.

If we denote the time when the robot arrived at waypoint i as τi, then all our ground

truth data for a single trial forms the set Sn = {sτ1, sτ2, . . . , sτn}.
5https://wiki.ros.org/gmapping
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Figure 4.3: Simulated Gazebo environment with 15 marked waypoints in red. Each
cardinal and inter-cardinal direction is represented at least once. The white point
cloud is the global reference map used for ICP localization.

A simplified tunnel-like map seen in Fig. 4.3 was used for testing with n = 15

waypoints chosen to reflect a variety of positions and orientations. Each trial used the

same 15 waypoints assigned in the global reference frame. To ensure a sufficiently large

dataset, m = 200 trials were performed for each waypoint. However, not every trial

was successful, resulting in less than 3000 individual datapoints. If failures occurred in

the middle of a trial, data was collected up to the last successfully navigated waypoint.

Therefore, we were able to compute a success rate in addition to the accuracy and

precision of each framework.

Multi-session waypoint navigation implies a first session followed by many sub-

sequent sessions. The initial session can be performed by starting a robot in the ideal
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Algorithm 4.1: Simulating 200 trials of navigation to 15 waypoints

Data: W15

1 m← 200
2 count← 0
3 n← 15
4 for count < m do
5 begin localization simulation
6 i← 0
7 for i < n do
8 navigate to wi ∈ W15

9 record robot state
10 i++

11 end simulation
12 count++

state, with no errors. However, under autonomous navigation, the robot needs to

navigate itself back to the home position and orientation. Any errors accumulated

during navigation will affect future sessions if not accounted for. Therefore, we per-

formed two phases of simulation, in which the first phase represents an initial session

where the robot was placed exactly at the origin of the map for each trial. By the

comparing the final UGV ground truth locations against the assigned waypoints, we

created a set En = Sn−Wn = {e1, e2, . . . , en} of target errors. These errors are plotted

in Fig. 4.4 and show how GMapping resulted in more accurate waypoint navigation.

However, it is clear that the ICP framework has higher precision, as the convex hulls

around each individual waypoint’s error ei form relatively small clusters.

The second phase of simulation is conducted similarly to the first, with the

only change being the starting location of the robot. For these trials, a random error

from the first session e ∈ E was added to the robot’s initial pose. The same map,

set of waypoints Wn, and number of trials were performed as in the first round of

simulation. However, the results show significantly worse errors for the GMapping
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Figure 4.4: Translational and rotational displacements of Jackal UGV when navi-
gating to waypoints in simulation. Convex hulls around data from each waypoint
illustrate navigation precision within the translational displacement plots at top.

framework, while the ICP framework barely had any changes, as seen in Fig. 4.5.

The success rate of each method was also affected during the change from initial

session to second session. For the initial session, ICP had 198 trials reach the first

goal point successfully, while only 134 managed to reach the final goal. GMapping

had similar values, with 188 reaching the first goal, and 122 completing the entire

trial. ICP achieved higher performance in the second round of simulation, with 148
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Figure 4.5: Translational and rotational displacements of Jackal UGV when navigat-
ing to waypoints in simulation, during the second navigation session. Convex hulls
around data from each waypoint illustrate navigation precision within the transla-
tional displacement plots at top.

trials reaching the final goal, although only 195 reached the first goal. As expected

with the additional error, GMapping had 162 trials reach the first goal, but only 14

trials managed to navigate to all the waypoints. Besides the accuracy and precision

outcomes, the robustness of each algorithm demonstrates the benefits of localization

using a prior map, for repeated waypoint navigation tasks in indoor environments.
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4.3.2 Measuring Accuracy

When navigating to a waypoint, accuracy is a measure of how close the robot was

to the true goal. A simple method to compute accuracy is an average of Euclidean

distances:

1

nm

m∑
j=1

n∑
i=1

||zij − z∗i ||. (4.1)

For 2D Euclidean distance, zij = (xij, yij) ∈ sτij ∈ Sj and the true pose z∗i =

(x∗
i , y

∗
i ) ∈ wi ∈ W , resulting in an average radial distance. Accuracy was recorded

independently of the specific waypoint measured against. For our initial session,

ICP yielded an accuracy of 0.257994m, while GMapping has a significantly smaller

value at 0.105023m. Angular orientation accuracy used the same basic equation, with

zij = qij ∈ sτij applied to the yaw angle, and once again z∗i = q∗i ∈ wi. As seen in

Fig. 4.4, both algorithms achieved similar rotational accuracy, which amounted to

0.045672 radians for ICP and 0.04284 radians for GMapping. Based on these results,

GMapping has higher translational accuracy with comparable rotational accuracy,

when compared to the ICP framework, using the exact origin as the robot’s starting

location for each trial.

When performing multiple sessions, GMapping was unable to maintain its

higher translational accuracy. As seen in Fig. 4.5, the ICP framework resulted in

nearly the same values as previously, with a translational accuracy of 0.255417m and

rotational accuracy of 0.045574 radians. GMapping however became drastically worse

at locating waypoints, resulting in a translational accuracy of 0.611964m. Rotational

errors seemed to be more centered with a wider range, leading to an accuracy of

0.043954 radians.
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4.3.3 Measuring Precision

Table 4.1: Initial Session Precision

2D Norm (m) Angular Norm (rad)
Waypoint ICP GMap ICP GMap

1 0.009754 0.037302 0.008005 0.010106
2 0.020213 0.043521 0.001827 0.014632
3 0.012137 0.042487 0.002672 0.014590
4 0.022351 0.086543 0.021018 0.037307
5 0.008230 0.059079 0.021327 0.009029
6 0.031140 0.089944 0.004168 0.035475
7 0.026128 0.060534 0.005460 0.007930
8 0.022558 0.090067 0.002955 0.026483
9 0.024736 0.049438 0.008284 0.036498
10 0.010818 0.048211 0.002223 0.028862
11 0.009416 0.042898 0.002218 0.013759
12 0.023257 0.047029 0.002852 0.013186
13 0.011861 0.034731 0.012552 0.008778
14 0.006096 0.035315 0.002980 0.030190
15 0.030237 0.036329 0.002558 0.026937

Precision can be computed using a similar averaging of the Euclidean norm,

with different parameters. This time, errors were divided into subsets based on the

waypoint they corresponded to, using Equation (4.2) for each waypoint i:

1

m

m∑
j=1

||zij − z∗i ||. (4.2)

Within those subsets, centroids were computed to estimate how tightly packed the

errors were. For translational precision, the centroids were computed as z∗i = (x̄i, ȳi),

while rotational precision was able to directly use the average yaw. Navigation pre-

cision was recorded for each waypoint, as seen in Table 4.1. While there is some

variability among the results, in the first session, the precision of the ICP framework

is superior to GMapping at every waypoint for both translational and rotational pre-



56

cision, with only two angular exceptions of waypoints 5 and 13.

Table 4.2: Second Session Precision

2D Norm (m) Angular Norm (rad)
Waypoint ICP GMap ICP GMap

1 0.011429 0.721628 0.016104 0.032240
2 0.018816 0.831810 0.001875 0.041254
3 0.012426 0.409511 0.002716 0.037715
4 0.022374 0.453125 0.024044 0.045671
5 0.008631 0.466506 0.021348 0.024298
6 0.027262 0.520502 0.005759 0.035139
7 0.025202 0.469325 0.007286 0.016256
8 0.025000 0.426370 0.005387 0.021191
9 0.026525 0.332063 0.006611 0.030635
10 0.010797 0.287184 0.002530 0.035593
11 0.010091 0.295293 0.002703 0.021767
12 0.024989 0.291501 0.002888 0.031338
13 0.012936 0.191098 0.015607 0.021560
14 0.005804 0.201783 0.002776 0.019334
15 0.031349 0.119085 0.001721 0.025049

Similar to the decline in accuracy, GMapping suffered drastically with respect

to the precision realized in the translational errors of its second session. Most way-

points saw order-of-magnitude worse results, while all angular precision measurements

were worse than those from the ICP algorithm, as seen in Table 4.2.

4.3.4 Real World Experiments

ICP localization was implemented on a Jackal UGV using a global reference map of

the ABS Engineering Center at Stevens Institute of Technology seen in Fig. 4.6. A

script published the same waypoints for five consecutive trials. The final waypoint

was placed at the origin of the map so that the robot could return autonomously to its

start location. To simulate multi-session navigation, the localization algorithm was

restarted remotely before each trial began, however the hardware was not touched
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Figure 4.6: ABS Engineering Center used for real world testing of ICP localization
framework on Jackal UGV.

between trials. All five trials can be seen in Fig. 4.7 where the pathways varied, but

the waypoints were reached precisely.

All of the preparations to perform real world testing, and its execution, oc-

curred on the same day. LiDAR data was gathered by manually driving the Jackal

UGV around the ABS Engineering Center while recording. For complete coverage,

the manual path taken was more comprehensive than our final autonomous path. The

environment was small enough that our offline SLAM solution produced an accurate

prior map to use in less than 10 minutes (shown in white in Fig. 4.7). After updating

the localization parameters, waypoint navigation testing began. Waypoints were man-

ually placed on the global reference map via rviz. If the waypoints were reasonable
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Figure 4.7: Five consecutive execution traces of autonomous waypoint navigation on
the Jackal UGV using the proposed architecture of Fig. 4.2 in Stevens’ ABS Engi-
neering Center. Fifteen waypoints marked with green arrows were sent via script to
run autonomously. Each new trial was started by resetting the localization software,
but the hardware was not moved, to ensure true multi-session navigation. A video of
this process can be viewed here:
https://youtu.be/vSRrwgDN9kg

(e.g., appeared to be collision-free), they were added to the autonomous navigation

script. Once the script was complete, everything was put in place for autonomous

navigation around the indoor environment. The total process from gathering the

prior map data to defining waypoints and autonomously navigating to them took less

than 4 hours.

The reference map used in this experiment included some extra data of dynamic

obstacles, such as team members following the robot around. During each navigation

trial, students were actively moving around this workspace as well, resulting in lidar

scans that were not perfectly matched to the prior map. However, ICP localization

combined with odometry achieved enough point to point matches to overcome any

https://youtu.be/vSRrwgDN9kg
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mismatches due to moving obstacles, which resulted in accurate localization even with

these discrepancies. Obstacle avoidance was restarted at the beginning of each trial,

and only current data was used to define obstacles, which enabled the Jackal to avoid

new objects that did not exist when the global reference map was created.

4.4 Conclusion

Using publicly available software packages, our team was able to produce a reliable

and quick system for building a global reference map and performing localization

that was sufficient for autonomous waypoint navigation in a previously unknown

environment. The global reference map does not need to be exactly the same as

the live data, thanks to the robustness of ICP combined with odometry data. This

is particularly helpful in environments with constantly changing floor spaces and

people actively walking around. While we were able to tackle localization for ground

vehicles, the default move base navigation package had limited success at avoiding

obstacles across multiple sessions, under the accumulation of errors. We hope that

the proposed architecture can serve as a foundational capability upon which the

robotics community can achieve more complex task execution in GPS-denied indoor

environments.
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Chapter 5

Mobile Manipulation Platform for Autonomous Indoor Inspections in

Low-Clearance Areas

5.1 Hardware Architecture

Figure 5.1: Reaching capabilities
with small footprint.

The Jackal UGV has a surface plate with mount-

ing holes 12cm apart to enable custom hardware

integration. For stability, a new plate using all

eight mounting holes was fabricated to create a

higher platform which would be used as the base

of the manipulator. The primary reason for this

was to contain all the extra pieces of hardware

underneath the plate, while a secondary benefit

was to extend the range of the manipulator with-

out compromising stability. Mounted underneath

the custom plate on one side is a 19V DC voltage

regulator used to power an Intel NUC. The other

side has the NUC, which is used to control the

manipulator and communicate with the Jackal’s

onboard computer. Their mounting positions and

power connections can be seen in Fig. 5.2, where

the plate is flipped for visibility. The batteries

provided by Clearpath operate the Jackal from 29.4V to roughly 25.6V. The Kinova

Gen3 arm can be powered directly by these voltages, while the NUC requires 19V
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consistently. When all these electronics are powered simultaneously, a fully charged

battery will last approximately 100 minutes.

Figure 5.2: Power connections used for mounted hardware. Mounting plate is upside-
down for visibility.

Data connections can be seen in Fig. 5.3 with the plate and manipulator

mounted. The manipulator is centered on the Jackal, which leaves the front or rear

for mounting the 16-beam Velodyne puck LiDAR. Obstacle avoidance requires no

occlusion of data from the front, therefore the Velodyne was mounted towards the

front of the UGV. The NUC only has a single ethernet port, which is used by the

Gen3 manipulator, so a USB-C to ethernet dongle was used to connect to the onboard

Jackal computer. An E-Stop switch was mounted to the front of the vehicle to cut

power to the Gen3 manipulator if necessary.
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Figure 5.3: Data connections used for mounted hardware.

A diagram of the complete hardware architecture can be seen in Fig. 5.4. While

the direct data connection between the Jackal’s onboard computer and the NUC

ensures no data loss, beginning autonomous exercises requires some form of remote

activation. Therefore both computers were connected to a standalone wireless router

powered by a battery that can be carried around easily in a backpack when testing.

A laptop was configured to connect to the same WiFi to allow terminal control of

both the Jackal and the NUC. There were some instances where the Jackal did not

connect to the WiFi, however it was possible to access its computer via the NUC,

reducing potential failure scenarios.

The integrated mobile manipulation platform possesses three key sensors, seen

in green in Fig. 5.4. The Velodyne LiDAR is predominantly used for localization and
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Figure 5.4: Schematic of hardware components. Grey boxes denote separate physical
modules, pink describes power supplies, purple are computers, green represents sen-
sors with feedback, while blue defines actuators.

mapping, while the RGB-D camera on the wrist of the Gen3 manipulator handles

vision and range sensing tasks relevant to the arm. The manipulator also has torque

and position sensors throughout, which enable precise control over its position and

effort. The wrist interface can support additional sensors, but is more commonly used

for actuation. In this work, no specific end effector is adopted.

5.2 Software Implementation

Communication between the Jackal onboard computer and the NUC was handled

through the Robot Operating System (ROS). All systems have Ubuntu 20.04 installed

and use the Noetic distribution of ROS, which enables users to run python3 within

ROS. The wired connection on the Jackal has a default static IP that was not changed,

while the NUC had to be assigned an IP address for ROS. These wired addresses were

different from those used by the wireless router and seen by the laptop. However, with
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the appropriate configuration, ROS was able to communicate seamlessly between all

three devices with the Jackal as the only ROS master. Messages that were sent from

any of the three devices were received by all three devices without packet loss until

larger data sizes were attempted over WiFi. The chance of losing data over spotty

WiFi was the primary reason for including a wired connection between the Jackal’s

onboard computer and the NUC, ensuring that locally run programs never lose data.

While the Jackal boots ROS upon startup, the NUC and Gen3 manipulator

both require manual startup. The NUC itself operates as an ordinary computer with

no monitor nor input mechanisms. By pressing the power button, the NUC will

boot up and wait. The manipulator will operate the same way, booting up with the

power button before waiting for a command. Accordingly, the laptop is crucial for

initiating automation. Using the laptop to secure shell (SSH) into the NUC over

WiFi allows users to start the ROS programs installed. The Jackal powerboard only

releases power once the Jackal has been turned on, so the NUC can only ever be

turned on afterwards. Therefore the ROS program initiated on the NUC to control

the Gen3 manipulator will see the Jackal ROS master when attempting to start. Once

the Jackal is on and the NUC program is running, the systems are integrated and

functional.

For safety, a few software considerations were implemented. The most conse-

quential is the “driving configuration” of the Gen3 manipulator. Seen in Fig. 5.5,

the arm is lowered to reduce the center of gravity while aiming the camera to the

side. This enables users to have a clear view along the side of the robot for poten-

tial interactions while maintaining stability as the Jackal navigates throughout its

environment. A secondary software implementation is acceleration limits when the

Jackal drives around. Using smaller acceleration limits, we were able to reduce all

bouncing motion resulting from the top-heavy Gen3 manipulator. When the Jackal is
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Figure 5.5: Travel configuration for safe, stable driving throughout the environment.

stationary and the arm is moving, it also has acceleration limits and boundary limits.

While the 17kg UGV has a wide enough base to handle the full reach of the 7kg

manipulator without tipping, extra weight mounted to the wrist could become a con-

cern. Therefore, a software limit can be imposed upon the manipulator workspace

to ensure the arm remains stable. The combination of these settings enables the

mobile manipulator to freely traverse a cluttered environment with minimal vehicle

footprint, while maintaining a large reach for manipulation tasks.
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(a) First semi-autonomous waypoint

(b) Second semi-autonomous waypoint

Figure 5.6: Localization with Occlusion in Stevens’ ABS Engineering Center. The
Red Arrow indicates autonomous navigation goal. The Path in green was manually
driven by remote control, while the path in blue was autonomous. The White point
cloud is a global reference map, and the colorful pointcloud is the current Velodyne
scan.
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5.3 Experimental Results and Discussion

5.3.1 Localization with Occlusion

Two main tests were run with this hardware. The first experiment tested the plat-

form’s localization capability using the Velodyne puck LiDAR with the occlusion

from the Gen3 manipulator included. Most localization performed with a LiDAR

will not have such a large portion of its field of view missing. However, even with the

occlusion, localization was performed accurately and reliably using our autonomous

waypoint navigation package [2]1. Localization with occlusion was tested in Stevens’

ABS Engineering Center and can be seen in Fig. 5.6.

This environment was a very busy indoor atrium with upwards of 40 students

working and moving throughout testing. The white point cloud data in both images

was used as the global reference map for localization, and the data used to create that

map was gathered approximately an hour beforehand. While testing the localization,

both manual driving and autonomous driving of the mobile manipulation platform

occurred. Due to the busy nature of dynamic obstacles in this environment, the

autonomous driving portion occurred with fewer obstacles nearby.

Mounting the Gen3 manipulator onto the Jackal and driving around in the

travel configuration resulted in a Velodyne occlusion of approximately 60 degrees, or

one sixth of the complete field of view. To minimize potential failures, the occlusion

was engineered to be towards the rear of the vehicle, ensuring obstacle avoidance is

possible when necessary. With the occlusion limitation, localization was successfully

tested with both manual driving and autonomous waypoint navigation in a busy

indoor environment.

1https://github.com/RobustFieldAutonomyLab/waypoint navigation
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5.3.2 Panel Alignment

The second experiment tested the connection between the two robotic subsystems.

For future manipulation tasks, aligning the Jackal and Gen3 arm to a wall panel

will be required. While it may be possible to perform this task through the Jackal’s

Velodyne localization alone, the accuracy and precision may not be reliable enough

for all scenarios. Therefore, using a combination of the arm’s wrist-mounted RGB-D

camera and the Jackal’s Velodyne localization can produce the desired effect.

(a) Compute dist. & angle to wall (b) Turn orthogonal to wall

(c) Drive to wall using localization (d) Turn parallel to wall

Figure 5.7: Autonomous alignment with a panel through combined action among the
Jackal and arm.
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This behavior was tested on a propped open door, to show the effectiveness of

alignment on partial planar structures. We assume the camera is facing some panel-

like object for this process to succeed. The first step uses the depth camera data to

identify both the distance and the angle between the current position of the robots

and the identified panel. Once computed, the Jackal rotates towards the panel until

orthogonal, using its localization to the global reference frame to ensure accurate

orientation. The Jackal then proceeds to drive towards the panel, and its standoff

distance is also checked using localization in the global reference frame to ensure an

accurate traversal. The final step for panel alignment is for the Jackal to return to

being approximately parallel to the panel to enable the maximum workspace for the

Kinova manipulator to begin working as intended. This also allows the program to

confirm that the robots are close enough to begin the manipulation task (if they are

not, a final rotation is performed by the arm to further align with the panel). This

process is summarized in Fig. 5.7. We expect this functionality to be used for placing

the Jackal at specific locations in an indoor environment where manipulation tasks

are required. The Gen3 arm should complete all tasks while the Jackal is stationary,

before returning to the travel configuration and moving to the next location.

5.4 Conclusion

A custom combination of Clearpath’s Jackal UGV and Kinova’s Gen3 six degree-of-

freedom manipulator has been proposed for indoor inspection tasks in confined areas

requiring a larger manipulator reach. With a safe travel configuration and limited

accelerations, the platform was stable during autonomous navigation throughout a va-

riety of indoor environments. The hardwired data connection between robots ensures

no data loss when running computationally intensive programs for solving navigation
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or identification tasks. Further studies with this platform will include utilization of

the image data from the RGB-D wrist mounted camera, such as detection, tracking,

and visual servoing tasks. Custom end effectors will define the set of tasks that can

be accomplished by this platform, which hopefully will make use of its autonomous

navigation and long reach capabilities.
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Chapter 6

Robust Autonomous Mobile Manipulation for Substation Inspection

6.1 Problem Description

Acoustic and TEV measurements taken from a pothead compartment’s outer panel

can be used to identify anomalies before they lead to equipment failure, however tak-

ing the measurements can be dangerous and monotonous. Therefore, an autonomous

robotic solution has been designed around the InsightTM 2 handheld PD sensor from

HVPD1, which was selected to take the required measurements. The Phase Resolved

Partial Discharge (PRPD) feature separates background noise from true partial dis-

charge sources, enabling users to identify sources of concern quickly.

6.1.1 Partial Discharge Sensor

To use the PDS InsightTM 2 seen in Fig. 6.1 for repeated acoustic and TEV mea-

surements, a program can be created. Barcode stickers as seen in Fig. 6.2 must be

scanned to let the sensor know which panel is being inspected. After the barcode has

been scanned by the sensor, a measurement may be collected. However, each mea-

surement must be assigned to a barcode, thus each barcode will be scanned twice,

once for the acoustic measurement and again for the TEV measurement.

To successfully scan the barcode, the sensor has a horizontal diode laser which

can read a barcode when scanned between 2−5 inches from the sticker. This assumes

minimal roll, pitch and yaw differences between the sticker and the sensor. Vertical

tolerance is approximately 1cm while horizontal tolerance varies by distance from the

sticker, but can be assumed to be 1cm as well. These limitations require precision for

1https://www.hvpd.co.uk/pdsi/
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Figure 6.1: The Partial Discharge Sensor (PDS) InsightTM 2 from HVPD, which
can record Trasient Earth Voltage (TEV), Acoustic and High Frequency Current
Transformer (HFCT) measurements. Using barcode stickers to identify the substation
equipment of interest, measurements can be compared over time for diagnosis.

both robotic manipulation and visual barcode identification.

Acoustic measurements are intended for vented locations, where they can accu-

rately record the sounds within a pothead compartment. Without physical contact,

the sensor should be placed within 1cm of a vent to listen for anomalous acous-

tic signatures. Measurement data can be gathered with 5, 10 or 60 second periods.

Confirmation of successful measurement is required to store data.

Transient Earth Voltage (TEV) measurements require contact with a metal
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surface. For substation inspection, the panels used to cover switchgear cubicles are

sufficient. Direct contact must be made with the metal surface which similarly re-

quires minimal pitch and yaw differences, however roll does not affect the results.

Figure 6.2: An example of the PDS InsightTM 2 attempting to scan a barcode sticker.



74

The same time periods can be set for the TEV measurements. While it is possible for

vents to be located differently on each panel in a substation, an assumption was made

that all vent and TEV measurement locations are the same relative to the location

of each pothead compartment’s barcode sticker.

6.1.2 Automation Requirements

For a fully automated inspection, a robot would need to perform the functions outlined

in Fig. 6.3. Each function has two primary tasks, interacting with the handheld

sensor and moving the sensor around. Precise motion between barcode, vent and

panel locations can be performed by a robotic manipulator. However, motion between

barcode stickers needs a ground vehicle. Therefore, a mobile manipulation platform

was necessary to meet the motion requirements for this automation task.

In addition to motion requirements, our accuracy and precision requirements

will need specific sensors. LiDAR was used for localization when the ground vehicle

is moving. Depth camera data was used to identify distance between the mobile

manipulation platform and any surface expected to be worked on. Identifying the

precise barcode sticker location required an RGB camera. Internal data was used

to relate vent and TEV locations to the barcode sticker location for each panel.

Therefore, the mobile manipulation platform needs a LiDAR and an RGB-D camera

for accurate and precise task execution.

The last mechanical requirement for autonomous inspection is actuation. But-

tons on the PD sensor needed to be pressed with the correct timing to scan the

barcodes and record each measurement. A custom electromechanical wrist mecha-

nism was implemented to press the necessary buttons, with signal inputs from the

robotic manipulator. Power consumption can be a limiting factor, however a full

autonomous inspection run is expected to take less than thirty minutes, a small frac-
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tion of how long most mobile manipulation platforms can operate on a single battery

charge.

Figure 6.3: Basic Automation Process. For each panel being measured, the PD
sensor must scan the barcode, collect an acoustic measurement, then scan the barcode
a second time before measuring TEV. This process repeats until all panels have been
inspected.

6.2 Robotic Hardware for Inspection

To meet all the requirements for autonomous inspection, we chose reliable, widely-

used subsystems. Clearpath’s Jackal was chosen to be the unmanned ground vehicle

(UGV) integrated with a Velodyne Puck LiDAR (VLP-16). This UGV has some pre-
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configured packages for LiDARs and cameras, however there is currently no package

for mobile manipulation. Therefore, an independent decision was made to use the

Kinova Gen3 6 Degree-of-Freedom robotic manipulator with a RGB-D wrist camera.

A custom wrist mount was created to interact with the PD sensor using commands

through the Kinova Gen3 arm. The integration of these three pieces of hardware

satisfies all the sensor and motion requirements for the inspection task.

6.2.1 Jackal UGV & Velodyne Puck

The Jackal UGV was selected for its small footprint when navigating around in-

door environments with narrow passageways, and for the simplicity of mounting new

hardware. Larger UGVs were available with long-reaching manipulators already in-

tegrated, however they would be unable to safely navigate the typical passageways

in the substations of interest. There are many options for LiDAR sensors to gather

point cloud data. Prior experiments gave our team familiarity with the Velodyne Puck

and the small profile of the sensor ensured minimal issues for mobile manipulation

integration.

Clearpath’s Jackal has an onboard computer to manage sensor processing,

localization and motion planning tasks. ROS Noetic was installed to allow python3

packages to be used and ensure compatibility between the Jackal and Kinova Gen3

arm. The battery that powers the Jackal and all attached components operates

between 25.5V −29.4V and typically lasts for four hours on a single charge for Jackal

and Velodyne operations.

6.2.2 Kinova Gen3 Arm & Wrist Camera

The Kinova Gen3 arm was among the manipulator options investigated, and was

found to meet the requirements for this project. The minimal weight, power con-
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sumption and small base plate create an ideal candidate for mobile manipulation.

With a maximum reach of 891mm, this robot manipulator is much larger than would

normally safely fit on a small UGV like the Jackal. However, with precaution, safety

can be assured. Kinova also offers a wrist camera with RBG-D data, fulfilling the

sensor requirements for autonomous inspection.

The arm was controlled using an Intel NUC computer running Ubuntu 20.04

and ROS Noetic. The NUC requires a steady 19V while the Kinova Gen3 arm

operates within the range of 20V − 30V .

6.2.3 Wrist Mount for PD Sensor

To interact with the PD sensor, a custom wrist needed to be fabricated to push the

required buttons. Using 3D printed parts and electronics, a gripper was built with

the ability to push the “OK” and “∨” buttons seen in Fig. 6.1. A slim profile was

chosen to minimize vibrations when the manipulator moves, with a clasp to ensure

the sensor does not slip from its grip. Two servo motors were integrated with rack

and pinion systems with enough torque to sufficiently press the buttons as seen in

Fig. 6.4.

Unfortunately, the General Purpose Input & Output (GPIO) pins from the

Kinova Gen3 wrist did not operate at a high enough frequency to directly control the

servos, so an intermediary was necessary. Therefore, an Arduino Nano was included

with a step down voltage converter to control the button pressing behavior with

inputs from the Kinova Gen3 wrist as seen in Fig. 6.5.

6.2.4 Hardware Integration

Mounting the Kinova Gen3 arm to a Clearpath Jackal UGV was a non-trivial task,

and was described in [3]. Two main tasks needed to be accomplished for complete
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Figure 6.4: Custom 3D printed wrist to hold the PD sensor tightly, with two servos
to push the necessary buttons on the sensor handle.

hardware integration. Power management was the primary task. The Jackal’s on-

board battery runs at 25.4V − 29.4V and has a power board that offers users a direct

line to the battery. Those voltages meet the requirement to power the Kinova Gen3

arm, so all that was required was manufacturing a cable that fits the connectors.
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Figure 6.5: Wiring diagram of power and data connections for custom wrist imple-
mentation.

However, the Intel NUC used to control the arm requires constant 19V . Therefore, a

voltage regulator was added to the hardware. A full battery lasts approximately 90

minutes when every piece of hardware is on and operational, which is sufficient for

autonomous inspections of the substations of interest.

Communication between the two robots was the secondary task. ROS Noetic

offers a simple method to connect both robots for communication, with some net-

working. As neither the Jackal’s onboard computer nor the Intel NUC have a moni-

tor while operating as a mobile manipulation platform, an external laptop with WiFi

was used for inter-connectivity and control. However, WiFi is susceptible to packet

loss, especially in environments with large electrical fluctuations. Therefore, a wired

connection between the Jackal’s onboard computer and the Intel NUC was used for

the ROS connection. The Jackal boots up as the ROS core, which allows both the

power and the data connection from the NUC to rely on a separate core. Further
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clarification of the hardware integration between these two robots is described in [3].

5.

Figure 6.6: Complete hardware integration in travel configuration.

Gripping the PD sensor was not included in the prior implementation of robotic

integration. A custom mount was 3D printed to house the 20 pin ribbon breakout

board and produce four connections in the gripper. The DC/DC converter, Arduino

nano and two servos indicated in Figure 6.5 are located inside the gripper portion of
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the custom-designed wrist.

6.3 Navigating Between Panels

One key component of repeated autonomous inspection is the ability to navigate

to the same barcode sticker locations each time. Assuming that there will be a

method for barcode localization via RGB camera data and precise motions from the

manipulator, the ground vehicle does not require very tight tolerances for waypoint

navigation. However, some checks are needed to ensure the UGV is within an operable

distance from the barcode sticker.

6.3.1 Waypoint Navigation

A prior work describes a method to drive the UGV to the same global locations

consistently with autonomous inspection in mind [2]. An example of both manual

and autonomous driving with occlusion from the Kinova Gen3 arm can be seen in

Fig. 6.7. While this proves that the mobile manipulation platform can drive to

global waypoints successfully, there are limitations to the precision of this process.

Therefore, two methods were added to the process to ensure proper positioning and

alignment with respect to the desired pothead compartment panel.

The first method adjusts the UGV’s orientation and standoff distance from

the panel of interest. For clarity, the axes used for alignment are Y and X, with Y

being normal to the panel and X the horizontal motion parallel to the panel. Using

the depth data from the RGB-D camera on the Kinova Gen3 manipulator’s wrist, an

estimate was found for the difference between the origin of the camera and the plane

representing the panel. While the UGV is in motion, the Kinova Gen3 arm is folded

to the traversal state, which has the wrist camera aiming directly to one side of the
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Figure 6.7: Waypoint Navigation from [3] showcasing manual (in green) and au-
tonomous (in blue) driving of our lidar-equipped Jackal UGV with occlusions from
the Kinova Gen3 arm.

Jackal. Seen in Fig. 6.8, the UGV will yaw until parallel to the panel first. If the

camera is too far from the panel, the UGV will rotate to face the panel, drive forward

the difference between the current position and the tolerated distance along the Y

axis before turning back to parallel with zero turning radius. Rotations and forward
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driving use the localization data of the robot to the global reference map to ensure

the commanded angles and distances are accurately captured in the UGV’s motions.

Figure 6.8: Tasks performed by the Jackal UGV for navigation and alignment added
to each function as necessary.

The second alignment method occurs when the arm has begun movement to

locate the barcode sticker. If the barcode sticker is located along the X axis some-

where that is known to cause failures during inspection, then the UGV will need

to make adjustments. Assuming the robots are already parallel to the panel, small

motion directly forward or back along the UGV reference frame will suffice. Further

studies of this are documented in Section 6.7, under Panel Alignment.
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6.4 Robot Manipulator Control

Many programs exist for manipulation planning. Kinova offers examples of a driver

built for complete custom motion as well as integration with MoveIt2 in their reposi-

tory3 for the Gen3 manipulator. Alternatively, the Kinova API documentation offers

a method through direct device connection4. Each of these methods employ two com-

monly used target strategies, one in the Joint space and the other in the Cartesian

space.

Joint targets are easier to manage, as each joint has an encoder that measures

the precise joint angle at any given moment. Given a set of target joint angles, the

robot can quickly move each joint from the current location to the goal along the

shortest path individually. There are cases where collisions would occur or a target

angle is outside the capabilities of the manipulator. However, when operating in a

small subset of the total workspace, those errors are less likely to exist.

Cartesian targets are far more complex. Inverse kinematics can be used to solve

for multiple solutions, assuming no singularities. Then a pathway must be calculated

between the current position and the goal position. The custom driver solution offers

many methods, with the default using Rapidly exploring Random Trees (RRTs) with

conservative constraints to limit the options for a successful path. MoveIt allows

users to customize constraints, which is necessary as RRTs will otherwise generate

new paths for each iteration of motion. The constraints supplied by the custom driver

require every path to be a straight line from start to finish, and the end effector’s

orientation must be maintained throughout. These strong constraints work well in

a small subset of the manipulator’s workspace, but often result in failed paths when

2https://moveit.ros.org/ [62]
3https://github.com/Kinovarobotics/ros kortex/tree/noetic-devel
4https://github.com/Kinovarobotics/kortex
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the arm is extended. Due to the extended reach required for autonomous inspection,

this method was insufficient. MoveIt was pursued, as custom constraints could be

added as needed.

Figure 6.9: Tasks performed by the Kinova Gen3 arm for motion and alignment added
to each function as necessary.

The API documented method for Cartesian motion appeared to observe short-

est path constraints for trajectory planning. However, there was no guarantee of the

final position, as this method would pursue a “closest pose” policy if the final end-

effector location was unachievable, causing the wrist to pitch on occasion. That was

not an issue when working within the bounds of the arm’s workspace, so the API

method was tested alongside MoveIt to identify the highest-performing method for
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planning and motion control of the Kinova Gen3 arm.

6.5 Custom Gripper for PD Sensor

Gripping and button pressing were successfully implemented, however timing matters.

Fig. 6.10 shows the required behavior to measure both acoustic and TEV data from

each PD sensor function. As the manipulator moves between locations, the PD sensor

must be controlled. Unfortunately, there is no feedback loop to ensure that the PD

sensor is on the correct step. Therefore, the order of button presses and barcode

scans is pertinent. Another feature that must be overcome is timeout, where the PD

sensor will fall asleep. Certain screens have shorter timeout, but the main screen the

sensor will be on while the UGV is moving between panels is three minutes.

To manage the timeout requirement with organized button pressing, multi-

threading was implemented. A countdown timer runs within the second thread which

ends with pressing the “OK” button and resets the timer to just under three min-

utes. The counting variable can be accessed from the main thread, which is used for

barcode scanning as a 5-second timer is set before the arm moves towards the sticker.

This allows the button to be pressed without waiting for arm motion to finish, for a

higher likelihood of scanning the barcode, by mimicking human behavior for barcode

scanning.

6.6 Barcode Identification

Safety measurements from the PD sensor require a barcode sticker to be scanned

for long-term tracking of individual panels. While barcode sticker locations will be

known to users and can be defined in the global reference frame, a more precise

measurement will be necessary to ensure successful scanning occurs. Given that the
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Figure 6.10: Tasks performed by the custom electromechanical gripper for PD sensor
interaction, added to each function as necessary..

barcode scanning tolerance is approximately 0.5cm by 0.5cm with minimal roll, pitch

and yaw, the final adjustments must be made with precision. Therefore, the Kinova

Gen3 arm was used for the last step of corrections.

6.6.1 Camera Vision & Barcode Localization

The wrist camera was used to locate the barcode sticker precisely for manipulation

tasks. RGB data from the wrist camera was published through ROS Noetic at 1080p

with 30 Hz. Identifying the barcode sticker was a complex task that involved many

computer vision packages and made assumptions about the environment surrounding
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the sticker.

Python3 enabled the use of opencv, a computer vision package with many

helpful functions. Barcode identification from RGB data is one such method, how-

ever that alone would not solve for localization accurately enough for autonomous

inspection. There are objects that would be interpreted as barcodes by the computer

vision function within the same view as the sticker that is necessary. Therefore, a

mulit-step process was created as seen in Alg. 6.1. The first step to identify the bar-

code sticker is ensuring the camera is a set distance from the panel. Combined with

a manual focus on the camera optimized for that distance, the best possible images

will be used for identification. Then begins a for loop, with the intention of making

multiple attempts in the event of failures.

Within the for loop, the image is scoured for contours and barcodes. Contours

occur where pixels change quickly from light to dark and vice versa, indicating an

object such as a white sticker on a gray panel. Parameters for that function have been

tuned to the level of light seen in the lab testing space. Barcode identification occurs

when a series of dark lines are found, which often includes nearby vents. Therefore,

a method was created to identify the single contour that has at least one barcode

within, assuming that must be the barcode sticker. After the contour was isolated,

it was estimated to be a four sided shape, resulting in four corners. From the four

corners, a center position can be calculated and using a ratio between pixel size and

centimeters, a distance from the center of the camera and the center of the barcode

sticker can be estimated.

For the PD sensor to scan the barcode, a vertical offset was added to the

motion sent to move the arm. Pixel density measures the number of pixels per cm,

a ratio to identify the location of the barcode in cm. When the camera is a set

distance d = 40cm from the panel, the ratio is a constant found to be ρ ≈ 65.425.
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Algorithm 6.1: Barcode Identification and Localization

1 moveToDistance(d) ▷ Set Camera distance d
2 focusCamera() ▷ Focus Camera
3 for Count < n do
4 Count++
5 C ← findContours(image) ▷ Find “sticker”
6 B ← findBarcodes(image) ▷ Find “barcode”
7 c← checkBC( B, C):
8 return c ∋ b ∈ B inside c ∈ C
9 return center ← locateBarcode(c)

Figure 6.11: Tasks performed by the wrist camera for X and Z axis localization added
to each function as necessary.
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A full example of barcode localization can be seen in Fig. 6.12, including estimated

distance between the sticker and camera FOV centers’ in cm. Eq. 6.1 shows for

measurement i, the calculated distance from center to center is Ci, where x
c
p indicates

the x dimension of the camera’s calculation c, by number of pixels p. After multiplying

by the pixel density ρ, the value is transformed to cm, resulting in xc
i , the value used

for arm manipulation necessary for tasks seen in Fig. 6.11.

Ci =
(
xc
p, y

c
p

)
ρ = (xc

i , y
c
i ) (6.1)

Figure 6.12: Example of barcode localization. Blue box identifies barcode, green
contour finds rough shape of sticker, red box is a four sided approximation of the
green contour. Red circles indicate center of camera FOV and calculated center of
sticker. Distance estimates included.
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6.7 Experimental Testing

Quantifying success of each moving part is difficult when the tolerances vary drasti-

cally and there could be many underlying issues resulting in a single failure. Therefore,

data was gathered for subsets of each system that are relied on to make decisions.

Waypoint navigation [2] tested the precision of the ground vehicle to approach loca-

tions in 2D space. Further studies on the panel alignment and manipulation tasks

are provided here.

6.7.1 Barcode Localization

Described in section 6.6 via Alg. 6.1, the task of identifying and locating the bar-

code sticker has many steps. Ablation testing was done to test the effectiveness of

each step towards the final goal of a successful pose estimation. While it is possible

to take measurements from the same location each time, the results would lack the

diversity needed to ensure success within the expected workspace. However, ground

truth is difficult to model effectively for varying poses. One method is to calculate

kinematics for the arms true location. That would require the arm to be mounted a

known constant distance from the barcode sticker and maintain that relative trans-

form throughout testing. However, a simpler method was implemented which tests

both the barcode localization and the motion controller simultaneously.

6.7.2 Cartesian Space Motion

Cartesian motion controllers were tested alongside some barcode localization algo-

rithms in a unique pose estimation problem. The barcode sticker was placed in a

static location on a panel as the arm was mounted to a desk. A custom joint space

location was implemented as a starting configuration for the arm which was the bot-
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tom right corner of the camera’s workspace seen in Fig. 6.13. Random numbers

were generated for the horizontal and vertical motion of the arm within the camera’s

workspace of 20cm × 10cm using cartesian motion planning for multiple controllers.

The exact values in cm that the arm was supposed to move were recorded during each

test as Mi = (xm
i , y

m
i ). Once motion had completed, the barcode localization process

calculated Ci from Eq. 6.1. Given the static locations of the center of the sticker

and the starting position of the arm, we can use Ci +Mi to estimate the difference

between the two static locations.

Figure 6.13: Example showing method for testing Barcode Identification with Carte-
sian Motion simultaneously. The arm starts in the bottom right corner before moving
a known random distance within the workspace Mi. The camera is then used to cal-
culate the distance Ci to the center of the barcode sticker. Examples i and i+ 1 are
shown.

Three main options for motion control were given code examples for the Ki-

nova Gen3 arm. All three have no issue with Joint space control, moving from the

current joint angle positions to a set of goal joint angles. Each method also accepts

constraints, such as objects occupying part of the arm’s workspace, to plan a collision
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free path. However, Cartesian space motion and control varied between the different

methods.

The driver built for the Kinova Gen3 arm offers a highly constrained controller

for cartesian motion. All linear motion by the end effector must result in a direct

line path and the end effector must maintain the same orientation throughout the

trajectory. While there are use cases that need such a tight set of constraints, the

operational workspace is drastically reduced. Given that limitation, the built in driver

did not meet the requirements for this project.

On the opposite side of the spectrum, MoveIt offers a completely unconstrained

cartesian controller. Trajectories are planned using rapidly exploring random trees

(RRTs) which results in varying paths even from the same starting and ending poses.

To combat this behavior, custom constraints can be added to the motion planner man-

ually, such as maintaining end effector orientation. For the purpose of this project,

two main constraints were considered for cartesian path planning. The first constraint

is used for direct forward and back motion, where the constraint is a rectangular prism

in the Y direction. Extended quite far forward and back, the constraint limits hor-

izontal and vertical motion to a 5cm bound. This motion enables the arm to move

directly towards and away from the panel as needed. The other constraint is es-

sentially the opposite, where forward and back motion is bounded to 5cm while the

horizontal and vertical workspace is extended out. With this constraint, the arm will

be able to move parallel to the panel.

Finally, the API documentation offers a method to send joint and cartesian

goal poses directly to the arm for internal planning. While there are some constraints,

cartesian motion planning was successful even in the far reaches of the workspace,

making this method feasible for the requirements of this project. Therefore, both the

MoveIt and API methods were tested with the barcode localization methods to find
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the ideal motion planner.

Trials of eight different computer vision methods were tested 100 times each.

Two primary methods were used, the ”full” method is as described in Alg. 6.1 and

searches for a contour with a barcode inside to identify the sticker and therefore

the center of the barcode sticker. The alternative method labeled ”simplified” only

considers the barcode itself by skipping lines 5, 7 − 8 in Alg. 6.1, and knows that

the barcode exists in the lower half of the sticker but is otherwise centered. Both

methods have functions to remove any vertical barcodes, a 50 attempt limit before

giving up and a manual focus based on set distance from the panel. For ablative

testing, the vertical barcode limitation was removed, and the limit was dropped to

5 attempts. Changing camera focus was tested only on the ”full” method and the

results are independent of the rest of the localization process.

After gathering all eight trials worth of data using both the MoveIt and API

motion controllers, Fig. 6.14 shows the estimated starting position of the arm relative

to the barcode sticker. True positive results are clustered together, where small

errors such as motion error or calculation error appear. The total range of this

error is important for inspection tasks as the PD sensor requires a tight precision

to scan the barcode successfully. Outlier data indicates false positive data, which

comes exclusively from errors with the barcode localization method using camera

data. Between both motion controllers, the simplified method without the removal

of vertical barcodes clearly results in the most false positives.

An average of the true positive cluster is added to Fig. 6.14 for an expected

ground truth. Using the average, we removed the false positive values to get a clearer

understanding of the true positive errors seen in Fig. 6.15. The scale between the

two parts were maintained to show the quantitative difference between the motion

controllers. While MoveIt offers freedom of choice with regards to constraints, the



95

(a) Pose estimation of the arm’s starting location relative to the barcode sticker using the
MoveIt controller.

(b) Pose estimation of the arm’s starting location relative to the barcode sticker using the
API controller.

Figure 6.14: Estimated Starting Pose using Ci+Mi for calculations. Both true positive
and false positive results are shown. Two motion controllers are tested against the
same barcode localization methods. 100 tests were performed per barcode localization
method. An average of the true positive cluster is included for error analysis.

API motion controller is vastly more precise. A close up of API controller true pos-

itive results visualizes the calculated bounds [−0.522cm, 0.522cm] in the horizontal

direction and [−0.330cm, 0.330cm] in the vertical direction using 3σ for 99.7% confi-

dence of a normal distribution. The extra variance in the horizontal direction could

be caused by calculation errors from the barocode localization method, as the bound

is smaller if we exclude the ”full autofocus” method. Compare those ranges to the

[−2.828cm, 2.828cm] and [−3.004cm, 3.004cm] bounds found using the MoveIt con-
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(a) Using the MoveIt controller, the standard
deviations were calculated to be σmi

x = 0.943
and σmi

y = 1.001 which results in ranges
of motion [−2.828cm, 2.828cm] for horizontal
and [−3.004cm, 3.004cm] for vertical, assum-
ing normal distribution.

(b) Using the same scale as the MoveIt
controller figure, it is clear the API con-
troller is significantly more precise for mo-
tion. Standard deviations of σapi

x =
0.174 and σapi

y = 0.110 results in
[−0.522cm, 0.522cm] range for horizontal
motion and [−0.330cm, 0.330cm] range for
vertical motion.

Figure 6.15: True positives are expanded for a closer look.

Figure 6.16: Closer look of normalized true positive results with the API controller.

troller, and it is clear that the API controller will be necessary for precision.

However, the experimental results were created to decide on not only the mo-
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tion controller, but also the barcode localization method. Fig. 6.17 shows success

rates and processing time of each method for both motion controllers. Success rate

was calculated as the number of true positive results divided by the sum of the true

positive, false positive and true negative results. There were no false negative results

as being unable to find the barcode is a true negative. Similar success rates were seen

between the two motion controllers, indicating independence of success rates. The

only exceptions to this are the no focus and auto-focus methods, which were tested

on the API version after a fresh bootup while the MoveIt data was collected after a

prior data gathering session.

(a) MoveIt controller results for successful
barcode localizations.

(b) API controller results for successful bar-
code localizations.

Figure 6.17: Two primary camera methods were chosen for base comparisons, ”full”
and ”simplified”. Ablative testing was done from each baseline, such as removing
the limitation on vertical barcodes, using an autofocus or no focus at all, or reducing
the number of attempts before ending the search. Time is represented on a log scale,
while success rate goes up to 1.0 for 100%. Comparable success rates were seen as
with each motion controller.

The ”full” and ”simplified” barcode localization methods out performed the

rest, both operating at 100% over 100 trials with each motion controller. While the

5 attempt limit of simplified also hit 100% with the API controller, it did not with
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Figure 6.18: Top down visualization to scale of X and Y axes alignment between
UGV and a panel. Y axis shows full range and standard deviation in blue. X axis
shows full range of camera view with blackout centered section.

the MoveIt controller, indicating some possible failure modes. Process time was also

considered to choose the best algorithm for barcode localization method. In both

motion controllers, the simplified method reduced processing time significantly over

the full method, therefore the simplified method was chosen for the final experiment.

6.7.3 Panel Alignment

The last functional requirement for autonomous inspection is the UGV placement for

the arm to inspect successfully. Two methods were introduced for alignment, one
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which attempts to correct the yaw and Y axis distance to the panel and another

which aims to handle cases where the barcode sticker is unable to be measured from

the current position via the X axis.

Using the wrist camera’s depth data, a planar estimation identifies the differ-

ence between the UGVs orientation and distance to the panel. By making this method

closed loop using the UGVs localization for rotation and translation measurements,

accurate positioning can be acquired. Trials were run where the UGV was given a

waypoint for inspection where angle and distance corrections occurred. The original

waypoint was approximately 1.6m from the panel, with a given goal of 30cm and less

than 5 degrees error from parallel. Testing with 100 trials showed a mean of 29.3cm

and standard deviation of 1.73cm, shown in Fig. 5.7. The arm inspection process

was tested from 24cm to 33cm distances every 1cm to ensure successful measure-

ments. Although the goal was 30cm, the Kinova Gen3 arm is capable of performing

inspections throughout the full range of [24cm, 33cm] values in the Y direction.

While the Y direction can be managed through depth data and global local-

ization, the X direction has a strict limit. To identify the barcode sticker, the camera

is moved to 40cm from the panel, which gives a viewing workspace of 20cm×10cm to

the camera. Therefore, the range of error for being able to view the barcode sticker is

[−10cm, 10cm] in the X direction, as seen in Fig. 5.7. Although the barcode sticker

is quite high on the panel, even at the edges of that range, the arm can manage all

the inspection tasks. Curiously, failures were found to exist within that range. In

particular, the center of the range results in failures, indicated by the black box in

Fig. 5.7. Approximately [−3cm, 3cm] range can fail, therefore an extra alignment

method was added. If |xc
i | < 3cm, the arm is sent back to travel configuration and the

UGV travels forward along the X direction until the barcode search position will be

5cm to the left of centered. This way, the arm can begin a new attempt at inspection
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from a location that is less likely to result in a failure.

6.8 Final Results

The ultimate goal of this work is to perform PD sensor inspections autonomously on

multiple panels labeled with barcode stickers. An experimental setup was created in

the ABS Engineering Center at Stevens Institute of Technology with two barcodes

placed at the height used within substations. To successfully perform a complete

inspection, each method described in this section must work together, resulting in

Fig. 6.19 which shows ordered tasks for each of the four basic functions necessary for

autonomous inspections.

Testing the complete automation in the real world proved difficult to quantify

with many steps. Therefore, the robots view of each step is shown in Fig. 6.20

for two barcode stickers. Each process boots up at the starting location, and after

the command is sent to automate, the robots handle the rest. The first waypoint

was chosen to be close to the starting location for rapid testing of the alignment

functionality and the starting location is out of the way within the lab space. Panel

alignment occurs, reducing the distance and angle between the wrist camera and the

panel, through motion of the UGV. Upon accptable alignment, the Kinova Gen3 arm

begins to search for the barcode sticker. A pre-programmed position is used to begin

the search, however small yaw adjustments are made and a final distance check for

40cm is done to ensure the camera has optimal viewing conditions. After noticing the

barcode sticker was too centered, the arm returned to the travel configuration before

moving the UGV forward slightly and then returning to the search position. This

motion is captured by the cyan trail between Fig. 6.20d and Fig. 6.20e. After the

final alignment, the arm believes it can successfully perform the complete inspection
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Figure 6.19: Simplified complete autonomous inspection tasks for each function based
on each piece of hardware. Each task is ordered from left to right, top to bottom to
ensure successful inspection.

task and begins scanning the barcode. Button pressing is unable to be sensed by the

robots, and therefore does not have a representative figure.

Once the barcode has been scanned, the arm moves to the vent, located 41cm

down from the sticker. To manage such large motions, the end-effector also moves

38cm to the left, ensuring the arms stays within the available workspace. The vent

in the substation is approximately 80cm wide, with the barcode sticker ≈ 8cm right

from center. Measuring acoustic data requires the PD sensor be close but not in

contact with the vent, so the depth camera is used to place the sensor 1cm from the
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(a) Starting location. (b) First waypoint. (c) Align to panel. (d) Barcode localization.

(e) First barcode scan. (f) Acoustic measurement. (g) Second barcode scan. (h) Measure TEV.

(i) Travel configuration. (j) Second waypoint. (k) Align to panel. (l) Second barcode localiza-
tion.

(m) Third barcode scan. (n) Acoustic measurement. (o) Fourth barcode scan. (p) Measure TEV.

Figure 6.20: Simplified Complete Automation Process tested in the lab space. Blue
point cloud is the global reference map, multi-colored cloud is the Velodyne data
used for localization, with color varying by height. A purple point cloud represents
the depth data from the wrist camera. UGV and wrist axis are shown to represent
the current location of each. A cyan path is included to show UGV navigation
throughout the environment. Waypoints are indicated by the large red arrow. https:
//robustfieldautonomylab.github.io/Pearson_ASME_2024.mp4

https://robustfieldautonomylab.github.io/Pearson_ASME_2024.mp4
https://robustfieldautonomylab.github.io/Pearson_ASME_2024.mp4
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vent. Button pressing occurs to take the measurement and save the data. When the

measurement is complete, the arm moves back to scan the barcode, having already

identified its location relative to the UGV. Initial testing proved that searching for the

barcode from that same position reduced the chance of failing to scan the barcode,

therefore a new search begins for minor alignment. The simplified method to search

for the barcode was used in these tests and performed as well as expected. With

the arm aligned once again, the barcode is now scanned, using the depth camera to

decide how close to move the end-effector to the panel. TEV measurement requires

contact with the panel on any flat surface. A small downward offset from the barcode

location was chosen to gather TEV data, and the depth camera once again decided

how far the end-effector should move towards the panel. After more button press-

ing, the inpsection of the first panel is complete, and the arm returns to the travel

configuration before moving to the second waypoint.

On the way over to the second waypoint, some obstacle avoidance occurred,

resulting in the upward and downward motion seen in Fig. 6.20j. Some small ma-

neuvers of the UGV occurred near the waypoint as it tried to meet the requirements

necessary to declare itself arrived. Similar to the prior UGV and panel alignment, this

one has a large distance to cover, showcasing the reliability of the alignment method

by giving it tougher conditions than would be expected in the final product. The rest

of the steps follow the same mechanics as the first barcode sticker inspection process,

with the exception that the UGV no longer had to drive forward as barcode sticker

was already sufficiently off center for complete inspection.

Another inspection was performed in a real substation, to showcase the com-

plete expected behavior of our platform. This time, three panels were inspected

consecutively. Each waypoint was given a large offset from the panels as seen in Fig.

6.21d and Fig. 6.21g even though it was possible to simply drive straight forward
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(a) UGV moves to the first
waypoint.

(b) UGV aligns to panel. (c) Camera locates the bar-
code sticker.

(d) UGV moves to the second
waypoint.

(e) UGV aligns to the panel. (f) Camera locates the sec-
ond barcode sticker.

(g) UGV moves to the third
waypoint.

(h) UGV aligns to the panel. (i) Camera locates the third
barcode sticker.

Figure 6.21: Simplified Complete Automation Process tested in a substation.

once the first alignment was made. This choice was made to showcase the reliability

of the alignment methods used and ensure that obstacles would not pose an issue be-

tween inspections. Even with a drastic change in lighting and various other stickers

on the panel, the barcode localization worked well with the ”simplified” method in
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the substation environment. Aside from booting up the programs and running the

initial command, autonomous inspection was performed successfully.

6.9 Conclusion

Autonomous substation inspections will reduce failures and provide safer working en-

vironments for those delivering a crucial utility towards our way of life. While a simple

handheld PD sensor might seem like an easy task to automate, many components were

necessary to successfully perform autonomous inspections. Driving between inspec-

tion locations and avoiding obstacles, operating a robotic manipulator with precision

and using both LiDAR and computer vision to localize within the surroundings were

required for complete autonomy. A custom gripper with specialized button pressing

electronics and hardware was created to interact with the PD sensor. While there

were many methods to manage each of these tasks, our team chose specific robotic

platforms ideal for the mobile manipulation in cluttered indoor environments. Each

algorithm was tested for performance, and the optimal choice decided for the final

version. A complete autonomous inspection was performed on hardware using the

algorithms described in this dissertation.

While not explicitly mentioned in this dissertation, a few more features would

be required for daily autonomous inspections. The PD sensor needs to be reset after

gathering a dataset. This can be done by letting the sensor fall asleep, however

a press of the < key would be needed to go to the list of barcodes. Returning

to a home waypoint for the Jackal to restart localization has been tested in the

waypoint navigation work, however was not tested with the complete hardware setup.

Tangentially, a charging dock would be required for the battery to be recharged

between inspections, which would require a more accurate alignment method than
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simple waypoint navigation. The current charging capabilities of the UGVs battery

are insufficient for the power draw when everything is on, therefore a power saving

mode would be necessary during the time when the robots are not in use. Due to

some pitching of the wrist during arm motion, some barcode scans failed. One future

solution would be to use a small vertical translation down across the barcode with

the PD sensor actively trying to scan.
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Chapter 7

Dissertation Conclusion

Prior works have focused on laying a strong foundation for autonomous inspection. By

differentiating unknown and uncertain states in occupancy grid maps, implementing

fast and reliable waypoint navigation on an unmanned ground vehicle and integrating

a far reaching manipulator onto a compact UGV for precise inspection tasks. The

culmination of these works resulted in an autonomous substation inspection routine

that required many components working together. Successful autonomous inspections

occurred both in the lab space and in one of the Con Edison indoor substations.

Milestone features were tested within the Robust Field Autonomy Lab space

before scheduling a substation visit, such as the one seen in Fig. 7.1. Reliability

varies among tested components of the inspection process. While barcode localization

appear to be robust, slight variations occur in the X axis when the opencv package

identifies a barcode. With a tight tolerance, this can result in a “wiggle” as the arm

tries to confirm the localization. One method that could resolve this issue would

be to rely on a sweeping vertical motion for scanning the barcode. The implemented

method attempts to scan the barcode during the approach from 40cm away, requiring

highly accurate end-effector placement.

Precision of waypoint navigation has resulted in some failures to locate the

barcode entirely. The 20cm wide view of the camera drastically limits the search

range along the Y axis. Considering that there is an implemented method to move

the UGV slightly forward if the barcode is within the “dead zone”, it seems practical

to use the same system to move the UGV if the barcode is located too far to either side.

However, that requires the camera to locate the barcode while out of the standard
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Figure 7.1: Mobile Manipulation in a Substation

viewpoint. One such method would be to move the camera 20cm to the left or right

and attempt to locate the barcode from there. Given how high up the barcode is

located, this may be impractical based on the total reach of the arm. However, there

is definitely a method to increase the Y axis range that is likely worth pursuing to
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reduce the case of failures.

While only a few details could improve the robust behavior of the complete

autonomous inspection program, there are some other difficulties that would arise

from trying to make the entire system autonomous. Power is one of the main concerns.

Pass through charging can result in irreparable damage to batteries, so the systems

must be turned off when idle. Clearpath does offer a docking station, however our

lab has yet to test the behavior associated with that hardware.

Sending a start command remotely would be sufficient for semi-autonomous

substation inspections, however there is one major issue that our lab was unable to

resolve. To choose the list of barcodes for the PD sensor to scan, a single “<” button

press is required. This is only necessary to begin the inspection process, and there

are no other times when that button needs to be pressed. Therefore, the gripper was

designed to only fit two servos, for the “OK” and “∨” buttons. The PD sensor is also

battery operated, and would need a method for charging as well.
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[94] L. Kneip, F. Tâche, G. Caprari, and R. Siegwart, “Characterization of the

compact hokuyo urg-04lx 2d laser range scanner,” in 2009 IEEE International

Conference on Robotics and Automation, pp. 1447–1454, IEEE, 2009.

[95] J. Lambert, A. Carballo, A. M. Cano, P. Narksri, D. Wong, E. Takeuchi, and

K. Takeda, “Performance analysis of 10 models of 3d lidars for automated

driving,” IEEE Access, vol. 8, pp. 131699–131722, 2020.

[96] J. Laconte, S.-P. Deschênes, M. Labussière, and F. Pomerleau, “Lidar measure-

ment bias estimation via return waveform modelling in a context of 3d map-

ping,” in 2019 International Conference on Robotics and Automation (ICRA),

pp. 8100–8106, IEEE, 2019.

[97] R. Angelari, “A deterministic and random error model for a multibeam hydro-

graphic sonar system,” in OCEANS’78, pp. 48–53, IEEE, 1978.

[98] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang,

W.-C. Ma, and R. Urtasun, “Lidarsim: Realistic lidar simulation by leveraging

the real world,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 11167–11176, 2020.

[99] J. P. Espineira, J. Robinson, J. Groenewald, P. H. Chan, and V. Donzella,

“Realistic lidar with noise model for real-time testing of automated vehicles in

a virtual environment,” IEEE Sensors Journal, vol. 21, no. 8, pp. 9919–9926,

2021.



124

[100] Y. Zhong and H. Peng, “Real-time semantic 3d dense occupancy mapping with

efficient free space representations,” arXiv preprint arXiv:2107.02981, 2021.

[101] S. Macenski, D. Tsai, and M. Feinberg, “Spatio-temporal voxel layer: A view

on robot perception for the dynamic world,” International Journal of Advanced

Robotic Systems, vol. 17, no. 2, p. 1729881420910530, 2020.



125

Vita

Erik Pearson

Education

Ph.D. in Mechanical Engineering August 2016 - January 2024

Stevens Institute of Technology, Hoboken, NJ

M.E. in Mechanical Engineering August 2016 - January 2024

Stevens Institute of Technology, Hoboken, NJ

B.S. in Mechanical Engineering August 2011 - June 2015

Massachusetts Institute of Technology, Cambridge, MA

B.S. in Mathematics August 2011 - June 2015

Massachusetts Institute of Technology, Cambridge, MA

Work Experience

New Valence Robotics, Cambridge, MA

Product Engineer June 2015 - August 2016

Publications

Erik Pearson, Kevin Doherty and Brendan Englot, “ Improving Obstacle

Boundary Representations in Predictive Occupancy Mapping,” Robotics and Au-

tonomous Systems (RAS), vol. 153, Article 104077, July 2022.



126

Erik Pearson and Brendan Englot, “Simplified Multi-Session Robot Naviga-

tion using Waypoints,” Ubiquitous Robots (UR), pp. 319-326, 2023.

Erik Pearson, Paul Szenher, Christine Huang and Brendan Englot, “Mobile

Manipulation Platform for Autonomous Indoor Inspection in Low-Clearance Areas,”

International Design Engineering Technical Conferences and Computers and Infor-

mation in Engineering Conference (IDETC-CIE), 2023.

Erik Pearson, Benjamin Mirisola, Cameron Murphy, Christine Huang, Con-

nor O’Leary, Franklin Wong, Julia Meyerson, Luisa Bonfim, Matthew Zecca, Noah

Spina, Paul Szenher, Shalemuraju Katari, Shiv Bhatt, Takumasa Dohi, Thomas Co-

larusso, Thomas Gana, and Brendan Englot, “Robust Autonomous Mobile Manipula-

tion for Substation Inspection,” Under Review - Journal of Mechanisms and Robotics,

2024.



I

Appendix A

Further Studies of Occupancy Grid Mapping

A.1 Background - Sensor Modeling

To create the most effective inference based mapping algorithm, we must first under-

stand the limitations of the incoming data, which depends on the sensor used. Oc-

cupancy mapping typically uses range data sourced from sonar, radar, lidar or stereo

camera sensors. Each source has different capabilities and limitations that work best

in unique environments. For example, turbid underwater conditions severely limits

radar, lidar and stereo camera sensors whereas sonars are able to collect data as

intended.

Inference based occupancy grid mapping results will vary depending on the

sensor used. However, the inferences and predictions were created to deal with both

sparsity and noise. Therefore, to create a better inference model we will first look at

the sources of noise from each sensor and their affects on the data.

One common source of noise is surface material. Extensive testing shows that

reflectivity affects the residual error of range data for LiDAR sensors [94, 95]. This

is one source of noise in the ∆r direction.

However, not all sources of noise cause errors in the ∆r direction. For instance,

incidence angle of sensed surface causes data deflections in the ∆θ direction [96].

This sensor bias was tested thoroughly on multiple LiDAR sensors which had varying

degrees of error that scaled with both range and incidence angle.

LiDAR sensors are also affected by internal heating. A study was performed

where the environment was kept constant while the sensor continuously gathered data
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producing an error in the ∆r direction [94].

Weather conditions can affect range data too. Precipitation and opaqueness

will affect LiDAR and stereo camera sensors while underwater conditions can vastly

change the speed of sound and produce excessive pulse stretching [97]. These con-

ditions are common enough that there are multiple active attempts to recreate such

weather conditions in simulation [98, 99].

While there are many sensor options available for gathering range data, they

all appear to produce errors in the ∆r, ∆θ & ∆ϕ directions. Each sensor has its own

unique error magnitude, however they all appear to scale with depth [95].

Assuming that errors are centered around the truth, we can define sensor noise

as a set of Gaussian functions in each direction Gi(0, σi) ∀ i ∈ {r, θ, ϕ}. While each

σi is likely to have a different value, there is a common trait. The error increases

proportionally with range. Some sensors, such as the Velodyne Puck, have a small

increase in error caused by range while other sensors have more significant errors.

A.2 Common Modifications to Training Data

A.2.1 Modifying Occupied Space Training Data

Training data used to define Occupied space often comes in the form of a Point Cloud

where each point represents a ”hit” on a object around the sensor. For most simple

sensor setups, the data is gathered from a single source which indicates a uniform

angular distribution. While the distributions are generally dense enough to mimic

continuous representation, that only holds for data gathered close to the sensor. The

chord length between two neighboring beams from the sensor increases based on

their distance from the sensor. The resulting data distribution from this physical

phenomena has dense data near the sensor with increasingly sparse data the further
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away it occurs.

Highly dense data is unnecessary for occupancy prediction and will actually be

detrimental for computational complexity. Therefore, down-sampling is commonly

used the reduce regions of dense data while maintaining regions of sparse data with-

out generalization. Nearly all inference based occupancy grid mapping algorithms

employ this method. Another common method that modifies training data is setting

a distance limit from the sensor, where data beyond that range is excluded from the

training data set. By setting such a limit, an algorithm further reduces the data to

train on, while also specifically targeting data that is less accurate.

A.2.2 Modifying Free Space Training Data

There are two common choices for the training data used to estimate Free Space,

either a distribution of points between the sensor and each ”hit”, or the ray itself.

However, most algorithms that focus on Free Space representation also ”clean” the

data before predicting with it. One common method is to reduce the training data

by an offset from the ”hit” that defines Occupied Space. While this separates Free

from Occupied in the radial direction, the orthogonal directions are ignored. This

naive method only creates an accurate representation of the data if the ray from

sensor origin to ”hit” is perpendicular to the surface found via the ”hit”. As the

angle between the surface and the ray changes closer to parallel, the naive method

breaks down. Rays that are nearly parallel to a surface are called glancing rays.

Glancing rays present an issue with current inference based mapping methods as the

naive method is unable to handle the boundary between occupied and free in the

non-radial directions. Two methods have been found to reduce the error caused by

this issue.

The bilinearly weighted ray method proposed in [100] manages to handle the
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majority of glancing ray cases with minimal additional computational complexity.

However, there are scenarios where glancing rays will still affect the inference result.

The other method proposed in [1] chose to simply reduce rays that were considered

glancing. Reducing the length of a glancing ray ensured that there was no overesti-

mation from glancing rays, but also reduced some true estimation. Additional com-

putation complexity was required to reduce the glancing ray by checking for nearby

data along the length of the ray.

While setting a maximum range for occupied data is beneficial for reducing less

accurate data, a choice must be made whether to use that data to build free space

training data. Some inference based algorithms consider data beyond the max range

to have never existed, while others perform free space analysis on it before excluding

everything beyond the max range. The latter method ensures that free space will be

predicted accurately up to the boundary of max range, instead of leaving a gap in

the data as the prior method would.

A.3 Proposed Changes

A.3.1 Modifying the Kernel

Based on our understanding of the noise produced by sensors and with inspiration

from AKIMap [86], a new inference based mapping algorithm was devised. A variable

kernel length based on distance from the sensor resulted in the Linear Depth Kernel

OctoMap (LDKMap). Adjusting the kernel length alone would produce excessive

estimation, however we found a unique solution. The sparse kernel equation (3.11)

can be integrated to find the total area under the curve seen in 3.2 by using the limits

of [−l, l] for the distance d as seen in equation (A.1).
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l
)

]
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4σl

3
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The area under the curve is directly proportional to the kernel length l and

the kernel strength σ. Therefore, to maintain fair inference while adjusting the kernel

length, LDKMap uses a constant kernel area KA, making kernel strength inversely

proportional to kernel length. As the region of influence increases farther from the

sensor, the strength of our certainty about that data decreases.

To implement this feature into the code, the variables used for l and σ were

replaced with kern area and len scale. The length scale factor defined the rate of

linear increase of kernel length relative to the distance a node is from the sensor while

the kernel area was treated as a constant used to calculate σ during each prediction

as seen in equation (A.2)

σi =
3KA

4li
(A.2)

A.3.1.1 Pruning and Splicing

After establishing a large range of resolutions for Occupancy Grid Mapping in prior

work, a new goal was the include significantly smaller resolutions without increasing

computational complexity. Multiple resolutions have been effective at reducing the

number of nodes to iterate over when using the map for inspections. The most

common method to enable multiple resolutions is pruning, where eight map nodes of

the same occupancy type are pruned into a single node with double the length, width

and height. However, pruning alone has limitations, such as only increasing node size

and requiring all occupancy calculations to occur at the smallest resolution.

Two steps were considered simultaneously to meet the new criteria. The first
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Algorithm A.1: Linear Depth Kernel (LDK) Inference

Data: Training data: X ,Y ; Query point: x∗
1 Function LDK(X ,Y, x∗):
2 for each (xi, yi) ∈ (X ,Y) do
3 if yi = 0 then
4 Compute x̂i ← xfree from Eq. (3.9)
5 else
6 x̂i ← xi

7 ki ← k(x∗, x̂i) Sparse kernel, Eq. (3.11) (A.2)
8 α∗ ← τα∗ + kiyi
9 β∗ ← τβ∗ + ki(1− yi)

10 return α∗, β∗

requirement was an inverse function of prune, which we called ”splice”. Given that

pruning occurs when occupancy states are the same, splice was designed to dissect

a node into 8 sub-nodes based on conflicting occupancy data. The uncertain state

can be used to easily ascertain conflicting data and assign a threshold. With splice

implemented, the nominal resolution was set to be a middle resolution, with the

ability to prune to larger resolutions and splice to smaller ones.

A.3.2 Time Varying Data

Dynamic obstacles often occur in real world data gathering. However, most mapping

algorithms take snapshots and treat that data as absolute. An alternative approach

decays older data so that newer data is seen as more current [89, 101]. This feature

was also implemented into LDKMap to enable rapid changes between occupied and

free space with a slightly modified version of the BGK algorithm seen in algorithm

A.1 with τ representing the decay factor producing an exponential decay each time

new data occurs.
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A.4 Difficulties with Implementation

As expected when considering depth variant kernel length, far more calculations were

required to process a single point cloud. While the varying kernel length may produce

slightly more accurate results, the drastic decrease in frequency inhibited the potential

for more populated and accurate occupancy grid maps. This was another incentive

to build out the splicing system with the hopes of recouping some time back from the

excess computations.

While the concept of splicing seems to be a clear opposite to pruning, there

are some unique limitations. The two most difficult concepts to address were the

requirements for splicing and how to handle the data already condensed into the

current node. While the uncertain state does instantly qualify a node for splicing,

that state alone may be a subset of the nodes which should be spliced. For example,

an unknown node with occupancy p = 0.6 would represent a mid-sized node with

some likelihood of being occupied but there is not enough data to decide that yet.

However, if the node is spliced, the subset of the node where the occupied data

occurs, may be sufficient to deem a node as fully occupied while the rest of the space

is still considered unknown. Therefore, should the partially unknown node be spliced?

Based on the lower level data, the answer is yes. However, if all the unknown nodes

are spliced, then there’s no point in starting at the middle level. Multi-resolution

kernel inference has yet to be studied extensively, as all prior work used the same

size nodes for occupancy predicts before pruning based on similarities. A minor but

consequential issue is how to deal with kernel length and strength, as well as the γ

threshold for unknown. Larger nodes can be treated as a composite of lower nodes,

resulting in a significantly larger unknown threshold. Using that assumption, the

kernel length should also represent a larger region, but the kernel strength should
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not be lowered for such a large region, therefore we have to use a multiple of the

original kernel area KA as well. This results in varying estimations as they are taken

at different resolutions throughout the occupancy grid map.

The other major difficultly is how to treat occupancy data when splicing. Using

the kernel inference, training data is compressed down into either free or occupied

weights for each node. When pruning, the occupancy data can be added together,

to retain all unique information inside the node while producing something of similar

likelihood. However, splicing needs to find a way to separate out data which has

already been condensed. During implementation, we attempted to check for splicing

before updating the kernel within in each node. After the inference was calculated,

we would check for the uncertain state using the newly acquired data with the prior

node data. If the result was an uncertain state, splicing would occur where the prior

node data was split evenly in 8 ways before disseminating those values down to each

node below. Then, each new node was predicted with the current training data.

The process would continue until no cells were defined as uncertain or the smallest

resolution had been reached. As mentioned earlier, when predicting with multiple

resolutions, thresholds would vary that cause unsatisfactory results. For example, a

large enough node would have a large unknown threshold that the uncertain state

would be hidden from view. Alternatively, the uncertain threshold, which represents

a direct ratio, might too big to function correctly with the larger data within a mid

sized node, which would result in either occupied or free designation even though

there is conflicting data.

Adding the decaying feature to the kernel was simple and required minimal

calculations, but did not change the functionality of the original mapping algorithm

sufficiently to describe in a full paper.
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