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SITUATIONAL AWARENESS FOR LOW COST UNDERWATER AUTONOMY

ABSTRACT

Underwater robots have matured over the past few decades to support the

increasing need for maritime infrastructure assessment and other offshore activity.

However, deploying underwater robots often involves a high startup cost associated

with vehicle acquisition. It is often the case that companies not engaged in oil and gas

exploration are priced out of this technology. This is primarily due to the highly accu-

rate, often tactical-grade inertial navigation systems (INS) required to make state es-

timation reliable enough for long-duration autonomous operations. Moreover, sonars

are the perceptual sensor of choice due to the frequent need to operate in high-

turbidity water. Sonars, however, do not provide the dense 3D information required

for offshore asset evaluation or autonomous navigation. In this work, we consider

an underwater robot’s situational awareness, i.e., the required knowledge of a robot’s

environment to complete its mission safely.

We propose several sub-systems that assist in bridging the situational aware-

ness gap in low-cost underwater autonomous systems equipped with imaging sonars.

Firstly, we employ a stereo pair of orthogonal sonars to recover lost 3D data. Second,

we generalize the method of orthogonal sensor fusion to work in large-scale environ-

ments through object-level inference. Next, we use public domain prior information

to enhance the state estimation capabilities of a low-cost underwater robot. We then

use submaps to recover 3D maps, providing dense 3D maps without object-level in-

ference. Lastly, we extend our thinking to the multi-robot case. We showcase a

system that performs multi-robot simultaneous localization and mapping (SLAM)

using real-world underwater imaging sonar data, the first of its kind. In future work,
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this will enable multi-robot systems that are capable of safely operating in marine

environments and cooperatively completing their tasks efficiently.
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Chapter 1

Introduction

1.1 Problem Space

Underwater autonomy has emerged as a critical task serving markets ranging from

the intelligence community to the support of growing offshore infrastructure. How-

ever, autonomous underwater vehicles (AUVs) are often too expensive for companies

not engaged in oil and gas exploration. This means that smaller firms, such as civil

engineering companies or users considering teams of AUVs cannot engage the capa-

bilities of this technology. Moreover, when considering teams of robots working to

complete tasks, if the robots are too expensive, it will simply not be possible to deploy

the required number of agents. This work will focus on lower-cost AUVs, and the

methods we have proposed to address their limitations.

AUVs operating in real-world conditions will experience low lighting, turbid

water, and other challenging environmental factors. This means that when consider-

ing AUV perception, acoustic sensors become the tool of choice. When considering

inertial navigation systems (INS), it is typical to use a Doppler velocity logger (DVL)

for seafloor relative speed, combined with an inertial measurement unit (IMU) for

attitude estimation. For perceptual systems, sonar is the tool of choice due to its

robustness to the aforementioned environmental conditions. Sonar comes in several

flavors, single beam scanning sonar is mechanically actuated to view the environ-

ment. Multi-beam sonar uses an array of sonar beams to image the environment.

Multi-beam sonars are typically characterized by a non-zero aperture, which creates

multiple returns at each bearing angle. One way of addressing this is to use profiling
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sonar, which has a narrow beam, reducing the multi-return effect across the vertical

aperture. However, profiling sonars come at a notably higher cost than wide aperture

sonars, making them unrealistic for deployment in this context. Moreover, profiling

sonars only view a single slice of the environment. When compared to wide aperture

imaging sonars that image an entire volume of the environment, they provide much

lower situational awareness.

This yields a typical sensor payload of a DVL, IMU, and a wide aperture imag-

ing sonar. The total cost of this payload is on the order of five figures (USD). While

expensive, consider some of the recent work in the underwater space using vehicles

that cost an order of magnitude more [1]. Our INS system, consisting of a DVL

and IMU, has a high drift rate, meaning it’s reliability for state estimation is often 1

minute or less. Thus, drift correction using the wide aperture multi-beam sonar is re-

quired, classically known as simultaneous localization and mapping (SLAM). SLAM,

however, is challenging with the level of noise and ambiguity present in sonar imagery.

Moreover, while sonar images a 3D volume of space, it only reports two of the three

quantities in spherical coordinates. The sonar image contains range and bearing but

cannot measure elevation angle. Further, because of this lack of elevation angle 3D

mapping is a challenging problem.

In this work, we will address the issue of situational awareness for low-cost

AUVs. Specifically, we will consider the 3D mapping problem using a 3DOF SLAM-

based state estimate. The contributions of this work are as follows:

• A methodology for recovering the missing dimension using an orthogonal array

of multi-beam imaging sonars [2].

• An extension of the above using deep learning and Bayesian estimation to

rapidly map large scale environments [3].
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• A graph SLAM-based system that incorporates overhead imagery to correct

drift throughout the mission [4].

• A multi-robot SLAM system for underwater robots using imaging sonar with

simulated communications [5].

• An extension and comparison of previous 3D mapping work that retains data

between discrete timesteps [6].

Open source code has been furnished and video visuals as follows:

• BlueROV package: https://github.com/jake3991/Argonaut

• Sonar based SLAM: https://github.com/jake3991/sonar-SLAM

• Multi-robot Sonar SLAM: https://github.com/jake3991/DRACo-SLAM

• Orthogonal sonar fusion: https://github.com/jake3991/StereoFLS

• YouTube Channel: link

https://www.youtube.com/channel/UCg2MXnjDJ0Chte_E3xeiKSw
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Chapter 2

Background

2.1 Wide Aperture Imaging Sonar

2.1.1 Sensing With Wide Aperture Imaging Sonar

An imaging sonar measures points in spherical coordinates by emitting acoustic pulses

and measuring the associated intensity γ ∈ R+ from their returns. This information

is organized into an intensity image, which we view as a set of range-angle-intensity

vectors: z ∈ R+× [−π, π)×R+. While intensity image source data comes from three-

dimensional observations, images only contain one angle: bearing. These observations

are expressed in the robots own coordinate frameR and can be converted to Cartesian

coordinates using equation 4.1.

PR =


X

Y

Z

 = R


cosϕ cos θ

cosϕ sin θ

sinϕ

 . (2.1)

This means that when viewing sonar images, we are seeing a compressed version

of the 3D space that the image came from. This is analogous to a monocular image,

which does not contain depth, however in this case we are lacking a single angle in

spherical coordinates. This means that any 3D observation will have to be inferred

from the source image.

We would like to emphasize that this sensing modality is a necessary evil for

AUVs operating in non-trivial environmental conditions. For all it’s faults, multi-
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beam imaging sonar offers the AUV a sensor that is long range, robust to lighting

and water quality; clearly superior in terms of situational awareness.

2.1.2 3D Reconstruction Using Wide Aperture Imaging Sonar

The challenges associated with wide-aperture multi-beam imaging sonars have in-

spired an impressive body of work to address the fundamental limitations of their

under-constrained measurements. Firstly, work from Aykin [7, 8] estimates the ele-

vation angle of sonar image pixels in scenes where objects are lying on the seafloor.

The recent work of Westman [9] extends the work of Aykin and shows excellent

results in a constrained nearshore pier environment. However, these methods rely on

several assumptions that may often be violated. Firstly, both [8] and [9] assume that

all objects in view have their range returns monotonically increase or decrease with

elevation angle. While this assumption may hold true for some objects, it hinders the

application of their methods to arbitrary objects and scenes. Additionally, [8] requires

the leading and trailing edge of an observed object; this is obtained by examining the

shadow area behind a segmentation created by the sonar’s downward grazing angle. In

contrast, [9] only needs to identify the leading or trailing edge of the object; however,

in the experiments shown, the leading edge is always the closest return because of the

sonar’s downward grazing angle. Using a downward grazing angle makes the problem

significantly simpler to solve, but comes at a price. By tilting the sonar downward,

making the upper edge of the sonar beam parallel with the water plane, the AUV’s

situational awareness may be hampered. In cluttered environments, an AUV would

be unable to see above it before transiting upward, and a safe navigation solution may

not always be possible. Moreover, if the vehicle is perturbed in a way that violates

this geometric assumption, the perception system could be driven to inaccuracy.

We also note that a recent technique has employed deep learning with convolu-
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tional neural networks to estimate the elevation angle associated with imaging sonar

observations [10]. However a vehicle may lack opportunities for prior training and

exposure to the subsea objects and scenes it may encounter in a given mission.

Another method proposed by Aykin [11] applies a space carving approach

to produce surface models from an image’s low-intensity background, which outer-

bound the objects of interest. The min-filtering voxel grid modeling approach from

Guerneve [12] similarly removes voxels from an object model based on observations of

low-intensity pixels. These approaches require the objects of interest to be observed

from multiple vantage points to achieve accurate reconstructions.

A similar core issue can also be addressed from a simultaneous localization and

mapping (SLAM) perspective. Rather than trying to estimate the elevation of pixels

in a single frame, these works acquire features and use a series of views combined

with a pose graph back-end [13] to determine 3D structure. This was proposed by

Huang [14] in acoustic structure from motion (ASFM). This initial implementation

has limitations, chief of which is the reliance on manually extracted features. This

work was later built on by Wang [15], incorporating automated feature extraction and

tracking. While these methods provide impressive results, they are focused on recon-

structing the terrain under the vehicle, rather than providing adequate situational

awareness around the vehicle. The limitation of these methods for AUVs in clutter is

the perception system requiring a series of frames to recover 3D information, rather

than a single timestep.

Lastly, much has been accomplished in the realm of stereo vision, and of spe-

cific relevance, computing the correspondences between two vantage points of the

same scene. This concept is widely examined in an extensive body of literature [11-

14]. Further, many feature extraction methods have been developed over the years,

including SIFT [16], SURF [17], ORB [18] and KAZE [19]. Recently AKAZE [20] has
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shown promise in computing correspondences between acoustic images from a multi-

beam imaging sonar. Westman [21] shows the utility of AKAZE features in a SLAM

solution using acoustic imagery. Further, Wang [15] utilizes these same features in

terrain reconstruction with acoustic imagery.

We also note that the specific concept of using two imaging sonars in stereo

for 3D perception has been employed previously, but with relatively small differences

in position and orientation between the sonars, and for reconstructing sparse sets of

point features. The concept, first proposed by Assalih [22], was implemented and

further analyzed by Negahdaripour [23], and used to build 3D maps of both sparse

features extracted from a planar grid, and from small seafloor objects. Beyond its

output of sparse features, this work stands in contrast to ours as the sensors used have

aligned axes of uncertainty, rather than the orthogonal axes of uncertainty utilized

in our work. A notable example of dense 3D mapping is the Sparus AUV’s two

orthogonally oriented single-beam mechanically scanning sonars (one imager and one

profiler), used for cave mapping [24], [25]. However, the imager and profiler were used

independently to address SLAM and 3D mapping, respectively, in separate steps.

2.2 Inference Aided 3D Reconstruction and Mapping

There is a large body of work that applies probabilistic inference to enhance 3D

mapping and reconstruction. Most closely related are the methods that use inference

to improve point cloud or voxel mapping, which often use insights from large data

sets or object models provided a priori, which is not always available in an underwater

robotics setting.

The use of a variational auto-encoder to infer the 3D distribution of an object

given a single view from an RGB camera is explored in [26, 27]. As mentioned above,
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this work requires a large data set to pre-train the network weights. [28] explores the

use of synthetic data from a generative adversarial network to avoid this requirement.

[28] uses a single view voxel grid as the input for 3D reconstruction; the focus is 3D-

to-3D densification, rather than the 2D-to-3D inference considered in our work. A

similar concept to our work is explored in [29], where mapping is performed at an

object level. Here, object models are produced using high-quality depth camera scans

from a controlled setting. These scans are used to improve a 6-DoF SLAM solution.

Similar to [26, 27], the applications of this approach in underwater robotics are limited

due to the need for object models a priori. A notable use of inference in an underwater

setting is [30], where CAD models of objects of interest are provided a priori, and are

used to improve the map output.

A related set of methods use probabilistic inference to enhance occupancy grid

maps [31, 32, 33, 34]. While these methods are excellent at improving occupancy

map coverage, they solve mapping under sparse inputs by performing gap-filling and

semantic inference on a data structure of the same dimensionality as those sparse

inputs. In contrast, we focus on 2D-to-3D inference to enhance the dimensionality of

inputs that are not directly observed in 3D, whose inference is conditioned on prior

3D observations of the same class.

2.3 Underwater SLAM with Sonar

Graph-based pose SLAM has been used to support many successful underwater sonar-

based SLAM applications. Ship hull inspection using a forward-looking imaging sonar

is demonstrated in [35], multibeam profiling sonar SLAM traversing an underwater

canyon is achieved in [36], and planar SLAM using imaging sonar observations of the

harbor seafloor is described in [37]. Additionally, [38] uses a factor graph to per-
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form dense reconstruction of complex 3D structures using multibeam profiling sonar.

Although underwater landmark-based SLAM with sonar has also been implemented

successfully, [39, 21], the challenge of landmark SLAM with acoustic sensors is the

identification of point features, or the identification of objects as landmarks, and their

subsequent, repeated association as they are re-observed.

In the work that follows, we adopt pose SLAM for this reason. There is no

need to solve the data association problem over landmarks, and more importantly,

this implies that landmark identification is not required, and sonar observations not

amenable to conversion into landmarks (vessel hulls, seawalls, etc.) is still useful in

the SLAM problem.

While all of the above case studies are successful, [35], [37] and [21] rely on a

ring laser gyroscope for highly accurate, low-drift heading information. The inertial

package in [38] also shows highly accurate results as it is a simulation derivative of

the INS in [35], [37], [21]. Lastly, [36] and [39] use SLAM to address missing, or noisy

inertial information, showing improvement, but with drift still present.

While they represent impressive contributions to the state of the art, most of

these works stand in contrast to our own, as they rely on expensive INS systems.

In our work we focus on SLAM with a relatively low-cost vehicle, equipped with a

Doppler velocity log (DVL) and a MEMS inertial measurement unit (IMU) for dead

reckoning.

2.4 Fusion of Overhead Imagery and Ground Based Sensors

The fusion of overhead imagery with ground-based sensors has been widely explored.

Several paradigms have been applied, including the use of feature association and the

use of CNNs. Firstly [40], [41], fuse overhead images with ground-level perspectives
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by finding likely image pairs using image descriptors. These probable image pairs

are then leveraged in a particle filter to localize a robot. The authors of [42], [43]

and [44] utilize convolutional neural networks (CNNs) to compute image similarity.

A more apt comparison to our work is [45], where live radar images are used to

localize within a satellite image provided a priori, using deep learning to predict the

rotation offset between images, and synthesize radar images to facilitate registration.

In contrast, we use the output of overhead image registration to contribute factors

to a SLAM factor graph, which is composed of a variety of measurement constraints

from different sources.

Overhead image fusion has also been explored in underwater robotics, fusing

sonar imagery with overhead images using a CNN [46]. However, like [42], [43] and

[44], image similarity is the learned output, and direct registration is not addressed.

[47] proposes using a CNN to learn the mapping between a sonar image and the

companion overhead RGB image. This idea performs well on the authors’ similar

data, but the authors note performance limitations when generalizing; we believe

this is likely due to the poor correlation between acoustic intensity and RGB values.

Moreover, they do not consider the registration problem, of finding the transformation

between a given satellite image footprint and the sonar image. In contrast to these

works, we will use a CNN to learn a more general image representation, separately

address the registration problem, and use these measurements to improve an existing

graph-based pose SLAM system that also incorporates other sources of measurement.

2.5 Underwater Multi-Robot SLAM

In the underwater space, inter-robot constraints generally come in two forms [48]:

direct encounters where robots observe one another via acoustic ranging, and indirect
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encounters, where robots observe the same targets in the environment and may de-

rive inter-robot measurement constraints relating one another. We note that direct

encounters require synchronized clocks, which may not be practical over long periods

without GPS clock corrections due to clock drift.

We first consider [49], where a mobile base station is used to localize a team

of low-cost vehicles lacking perceptual sensors using an acoustic beacon. A similar

concept is considered in [50], except instead of a team of robots, a leader-follower ar-

rangement is used. [51] considers inter-robot ranging without fixed acoustic beacons

and performs a simulation study comparing the use of fixed beacons to a cooperative

localization solution. [52] considers an algorithm for processing inter-robot acoustic

pulses in a distributed manner. [53] proposes a pose-graph-based method for coop-

erative localization of a team of robots using dead-reckoning, GPS, and inter-robot

ranging. The outcome of this work is a system where a robot maintains an under-

standing of its state, and the team’s state. Moreover, when GPS measurements occur

at the surface, their effect is shared across robots. [48] integrates perception into the

above, and commonly observed features are shared and integrated into robot pose-

graphs. [48] assumes that robots share point-landmark observations in their survey

area, but the framework is only tested in simulation. Further, due to GPS, each robot

is effectively localized in a common frame, enabling the sharing of range-bearing mea-

surements to commonly observed targets without a need to solve the complex data

association problem. Recall, GPS may not always be available due to under-ice op-

erations or tactical situations (e.g., jamming). [54] considers the robot map merging

problem using only similarity in feature space, in this case, ship hull curvature. While

this work is able to merge trajectories and lower the data transmission requirements

between robots, it requires a highly descriptive feature vector. It is only validated

over a single dimension, whereas we consider a 3DOF system.
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There are some notable examples of underwater multi-robot SLAM using cam-

eras [55, 56, 57, 58] and cameras with other navigation sensors [59]. Cameras, however

are not robust in all water conditions. While these works are informative, because we

operate in turbid conditions with low visibility, we do not consider them further.

Another area to consider is the concept of multi-session SLAM, where a robot

is provided with a prior SLAM run and merges the map it builds with the prior

run as the mission progresses. This is examined for ship hull inspection [60, 61],

bathymetric mapping [62], ship-wreck reconstruction [63] and environmental moni-

toring [64]. However, multi-session does not account for communicating information

between robots, as it is a single agent system with prior information. Additionally, it

may be the case that the robot has some knowledge of its location in the prior map,

constraining the inter-robot loop closure search space.

In contrast to the above, we utilize no notion of an initial guess relating robot

reference frames. Second, we consider the bandwidth limitations of real acoustic

modem hardware and take steps to manage network utilization. Lastly, we implement

a fully functioning system to detect and estimate indirect encounters in sonar data:

inter-robot loop closures.

2.5.1 Place Recognition With Sonar

Place recognition (loop closure) is fundamental for a perception-driven multi-robot

system. Place recognition has been widely studied in LIDAR sensing [65, 66, 67].

These works assemble a 2D bird’s eye view image of a 3D LIDAR scan with coarse

discretization to compare scenes. They also derive a 1D descriptor to support scene

search and retrieval.

Place recognition has also been studied with sonar-equipped AUVs. Firstly,

[68] considers building scene graphs to compare scenes and evaluate rigid-body trans-
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formations but requires at least fifteen objects in each scene to run. Machine learning

has also been used to support this task in [69, 70]. However, few public sonar datasets

exist, and this is often a research area unto itself. Iterative closest point (ICP) based

loop closure is used in our prior work [71] to support single-agent active SLAM. This

work uses sonar derived point clouds with ICP; when ICP provides a transform be-

tween keyframes, we estimate overlap between the point clouds. Point cloud overlap,

then pairwise consistent measurement set maximization (PCM) [72], are used to re-

ject outlier loop closures. Inliers are integrated into the graph-based pose SLAM

solution. We note the extension of the PCM algorithm [61], but due to its additional

complexity, we will not utilize it in our work.

2.5.2 Acoustic Modems

To communicate, AUVs generally use acoustic modems, which are low-bandwidth

compared to in-air systems. One of the most well-known devices is the WHOI Mi-

cromodem [73], which can transfer a maximum of 5400 bits/s over a long-range. For

shorter-range transmission (300 meters), higher bandwidth (62.5 kbits/s) units are

available [74]. Moreover, recent research has demonstrated the feasibility of achiev-

ing even higher bandwidth in real-world conditions [75]. In our work, we consider

bandwidth to be limited, and we will study the network utilization of our multi-

robot system as a critical parameter. Further, we will take steps to minimize the

transmission of large data structures.
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Chapter 3

Fusing Concurrent Orthogonal Wide-aperture Sonar Images for Dense

Underwater 3D Reconstruction

3.1 Data Association

This section studies methods for data association. We assume that the robot is

equipped with two forward-looking acoustic sensors. The sensors are mounted such

that their fields of view overlap and permit θ and ϕ to be simultaneously observed.

This implies that with a proper calibration, two points from each image correspond

to the same object location p(R). We denote these points as

z(h) = (R(h), θ, γ(h))⊤, z(v) = (R(v), ϕ, γ(v))⊤. (3.1)

The horizontal sensor, h, compresses measurements in the x-y plane of R, whereas

the vertical sensor, v, compresses points in x-z. Their associated images sets are

denoted

Z(h) = {z(h)1 , · · · , z(h)N }, Z(v) = {z(v)1 , · · · , z(v)N },

where N ∈ N represents the number of observations from each sensor.

Given the intensity images Z(h), Z(v), we formalize the data association problem

as vertex matching in a bipartite graph G = (V,E). The vertices V = Z(h) ∪ Z(v)

contain all observed intensity points, and the sets

Ei = {(z(h)i , z
(v)
1 ), · · · , (z(h)i , z

(v)
N )},
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(a) ROV With Dual Sonars (b) Sonar overlapping fields of
view

(c) Reconstructed Pier Pilings

Figure 3.1: System Overview. Using two multi-beam sonars, correspondences
between their observations are computed to extract 3D point clouds. Sonar fields of
view corresponding to the hardware arrangement in (a) are shown in (b) - the red
swath is from the horizontal sonar and the blue is from the vertical sonar, shown at
a range of 10m. Fig 1(c) shows a reconstruction of pier pilings in the Hudson River.
Data was collected at a fixed depth.

define all realizable associations between points in the horizontal image and points in

the vertical image. Their union defines the total edge set E = ∪N
i=1Ei. Solutions are

obtained by finding a set S ⊂ E such that

S =
⋃
Ei

argmin
(z

(h)
i ,z

(v)
j )∈Ei

L(z(h)i , z
(v)
j ), (3.2)

where L(zi, zj) denotes the loss between features. Additionally we require the asso-

ciation to be bijective, in that for any two edges (z
(h)
i , z

(v)
i ), (z

(h)
j , z

(v)
j ) ∈ S it must be

that z
(v)
i ̸= z

(v)
j . We estimate p(R) from Eq (4.1), using the fused spherical coordinates

p̂(R) =

(
R(h) +R(v)

2
, θ(h), ϕ(v)

)⊤

. (3.3)

Here we use the empirical mean of ranges and the angular values from the resulting
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association.

Figure 3.2: data association architecture overview. Raw image pairs are taken
from the same time step, features are extracted, the features are clustered and then
matched using cluster labels as constraints.

3.2 3D Reconstruction

Given a set of 3D points P̂ (R) = {p̂(R)
i }Mi=1, we can complete the reconstruction by

mapping these into a fixed inertial frame I. This is accomplished with the linear

transformation T ∈ R3×3. When applied to the set of all points, the result is a point

cloud which we call the map:

P̂ (I) = {p̂(I)|p̂(I) = T p̂(R) ∀ p̂(R) ∈ P̂ (R)}. (3.4)
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3.3 Proposed Algorithm

Here we describe our proposed methodology for identifying feature correspondences

across concurrent orthogonal sonar images (summarized in Figure 3.2). The fun-

damental goal of this pipeline is to associate range measurements from orthogonal,

overlapping vantage points that are each lacking a single dimension in their respective

spherical coordinate frames. With a set of matched features, the algorithm output

(per Eq. (3.3)) is a set of fully defined points in 3D Euclidean space.

Figure 3.3: SOCA-CFAR overview. Purple cells show the training cells, blue the
guard cells and red the cell under test.

3.3.1 Feature Extraction

In our acoustic imagery we do not process every pixel, as not all pixels represent

meaningful returns. We must first identify which pixels belong to surfaces in the

scene, and to do this, we apply feature extraction to each acoustic image.

To extract features we use the constant false alarm rate (CFAR) technique

[76]. This class of algorithm has shown utility in processing radar images [76], [77]

as well as side-scan sonar images [78], which are similarly noisy sensing modalities.

We have found it to be the most effective feature detector in practice for reliably and

consistently eliminating the second returns that regularly appear in sonar imagery.

CFAR uses a simple threshold to determine if a pixel in a given image is a

contact or not a contact. However, it produces a dynamic threshold by computing

a noise estimate for the area around the cell under test via cell averaging. The

technique is sensitive to multiple targets in the image, especially when the noise



18

estimate includes other positive contacts. It is for this reason we utilize a variant

known as “smallest of cell averages” (SOCA-CFAR) [77]. SOCA-CFAR computes

four noise estimates and utilizes the smallest of the four. This estimate is expressed

in Eq. (3.5), with xm as a training cell, N as the number of training cells in that

quadrant and µ as the estimate of noise. This process is shown in Fig. 3.3. We

note that when averages are computed (purple cells), a layer of guard cells (blue) is

wrapped around the cell under test to prevent portions of the signal from leaking into

the noise estimate. Next, the detection constant is computed in Eq. (3.6), with α as

the detection constant. N is once again the number of cells in the quadrant and Pfa

is the specified false alarm rate. The threshold, β can be computed using Eq. (3.7),

with µmin, the minimum of the computed quadrant averages. The result of this step

in the algorithm is two sets of contacts, S(h)
t from the horizontal sonar and S(v)

t from

the vertical. Note that at each time step, there are two sonar images; these images

are independently analyzed for features. A sample pair of sonar images with CFAR

points at the top right of Fig. 3.2.

µ =
1

N
ΣN

m=1xm (3.5)

α = N(P
−1/N
fa − 1) (3.6)

β = µminα (3.7)

3.3.2 Clustering and Cluster Association

Once features are identified in an image pair, these features require an additional

constraint for robust association. To minimize the number of extraneous matches,

we can take advantage of the fact that each cluster represents a surface in view. By
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first clustering the extracted features and then comparing features between matched

clusters only, we can create a significantly more robust pipeline.

Clustering is performed using the Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) [79] algorithm on both sets of features S(h)
t and S(v)

t .

DBSCAN is selected because, in each image, the number of clusters is unknown, and

this approach does not require knowledge of the scene a priori. DBSCAN works by

iterating through the data, catalogging all core points with more than minSamples

neighbors lying within a radius ϵ, which, along with their neighbors, form our initial

clusters. All other unassigned points lying within ϵ of a cluster are assigned to that

cluster. The result of this process is two sets of clusters: C(h)
t from the horizontal

sonar and C(v)
t from the vertical sonar.

Next, to match clusters across orthogonal sonars, we compute four descriptors

and then minimize a cost function to associate clusters. Each cluster is defined by its

mean range µ, variance in range σ2, and min and max in range, shown in Eq. (3.8).

Each cluster c
(h)
t is assigned to the cluster in C(v)

t that minimizes cost function (3.9):

ct =

[
µ σ2 rmin rmax

]⊤
, (3.8)

L(c(h)t , c
(h)
t ) = ||c(h)t − c

(v)
t ||2. (3.9)

3.3.3 Feature Association

Following the clustering algorithm output, the next stage is to match individual

features within our matched clusters. A feature can only be matched to another

feature if they belong to the same cluster, which greatly reduces the potential for

extraneous feature matches.

To match features, we once again adopt the descriptor and cost function
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paradigm. Each feature is defined by range, r intensity γ, and a mean intensity

kernel. We consider two mean terms for each feature, which are broken into two axes.

µx is the mean intensity of i points right and i points left of the feature. µy is the

mean intensity of i points above and i points below the feature, in image coordinates.

The reasoning for this is straightforward; the body of work addressing elevation

angle estimation in sonar imagery relies on the relationship between incident angle

and intensity. Since our goal is to match similar measurements, we leverage this

relationship by hypothesizing that not only should similar measurements have similar

range, but also intensities, because of their similar incident angles. However, due

to the noise in acoustic images, we adopt not only range and intensity as feature

descriptors, but also local averages of intensity. Note that feature descriptors in

Eqs. (3.10) and (3.11) have mismatched axes in their µ terms, which is due to the

orthogonality of the images:

z
(h)
i =

[
r γ µx µy

]⊤
(3.10)

z
(v)
j =

[
r γ µy µx

]⊤
(3.11)

L(z(h)i , z
(v)
j ) = ||z(h)i − z

(v)
j ||2. (3.12)

We next compute the minimum-loss association among the features residing

in previously associated clusters. When carrying out this process, we only allow any

feature to be matched with a single other feature. Moreover, before evaluating cost we

normalize all components by subtracting from each feature the min image intensity

and dividing by the difference between min and max. These min and max values are

computed for each image, at every timestep.

In our implementation, we have developed two versions of this process; the first
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is a “brute force” method in which all possible correspondences for a given cluster are

tested for each feature, and the lowest cost is used provided it is below a designated

threshold. Alternatively, we take a fixed number of random samples from a cluster

and again use the lowest cost, provided it is below our threshold. These two versions

of our proposed algorithm will later be quantitatively compared.

3.4 Experiments and Results

In this section, we will examine three experiments and provide an analysis of their

outcomes. We will discuss the specifics of our experimental setup and the hardware

used to validate the proposed perceptual framework of Fig. 3.2.

3.4.1 Overlapping Area Considerations

When extracting features, we take a highly conservative approach to ensure that

features are only extracted from the region of overlap between the sonars. We only

extract features from the area inside the vertical aperture of each sonar’s orthogonal

companion. This conservative approach ensures no features are extracted outside of

the overlapping area depicted in Fig. 3.1(b).

3.4.2 Compensating for Sonar Misalignment

Before any data association can take place, we must transform our vertical sonar fea-

tures S(v)
t to the horizontal sonar frame. In our experimental setup, there is a 10cm

vertical offset between the sonar coordinate frames, shown in Fig. 3.1(a). This is

accounted for by applying Eq. (4.1) to transform our features in S(v)
t to Cartesian

coordinates, translate them a few centimeters downward to the horizontal sonar coor-

dinate frame, and then apply the inverse of Eq. (4.1) to transform the features back



22

into spherical coordinates for association. To apply Eq. (4.1), an elevation angle of

zero is assumed for all points in the vertical sonar image (this assumption is used to

facilitate data association only).

3.4.3 Error Metrics

To compare different parameterizations of our method against each other and a bench-

mark, we utilize two error metrics. Firstly we compute mean absolute error (MAE);

this is calculated by comparing the generated point cloud to a CAD model of the

object. Secondly, we compute the root mean squared error (RMSE); once again, this

is generated by comparing the point cloud to the CAD model. For our tank exper-

iments, to capture the transformation between the ROV frame and the CAD model

with high accuracy, the objects in our sonar imagery are hand segmented to identify

both the object coordinate frame origin (located at the center of the pipe comprising

all structures), and its rotation in yaw relative to the ROV. The remaining angles in

the transformation are obtained from the ROV’s IMU.

3.4.4 Simple Object Reconstruction

In this first experiment, a cylindrical piling mock-up is submerged in our test tank,

and a sequence of data is collected with our sonar pair oriented at a grazing angle of

20◦ below horizontal. This grazing angle is used in order to facilitate benchmarking,

as the current state of the art [9] assumes this problem structure. When collecting

data, the ROV is piloted in a circular-segment orbit pattern around the structure.

During this flight pattern, the structure is held at a similar range and bearing while

the ROV traverses to port or starboard. Data collection occurs at a fixed depth.

The purpose of this experiment is to evaluate the performance of the proposed

algorithm on a simple structure. Additionally, this experiment allows us to evaluate
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(a) Isometric view (b) Top down view

Figure 3.4: Results from pier piling mockup. A model of the structure’s true
dimensions is shown in gray (outer diameter is 9cm), with multi-colored points de-
picting algorithm output. Sonars were operated at 5m range, and results from our
algorithm’s “fast, clustering” configuration are shown. Colors indicate height.

our algorithm against the current state of the art, as [9] shows several experiments

reconstructing similar objects. During the comparison, it is essential to note that we

use SOCA-CFAR feature extraction in conjunction with our implementation of [9] to

ensure that all systems run on the same inputs.

While the goal of our algorithm is to move toward the reconstruction of ar-

bitrary objects with wide-aperture multi-beam sonar, we are acutely aware that the

algorithm we are proposing requires a second sonar. This experiment serves to show

that performance does not degrade in the case of objects that can be successfully re-

constructed with a single sonar. We compare four variations of our algorithm against

[9], as it achieves the best performance in our tank among the suitable algorithms in

the literature. Additionally, we posit that [9] fairly represents the foundational works
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of [7], [8], building upon them and offering broader applicability.

We compare four configurations of our algorithm to show performance gains

and trade-offs for different versions quantitatively. Firstly we evaluate the introduc-

tion of clusters as feature correspondence constraints. Secondly, we compare the

“brute force” approach in which all feature combinations are checked via (3.12), and

a version in which ten random samples from a feature’s corresponding cluster are

checked, with the best adopted if below a designated threshold. This second version

runs in real-time over all data gathered, while the brute force method runs signif-

icantly slower. We also note that [9] runs in real-time in these experiments. The

feature correspondence threshold is the same for all methods and experiments pro-

vided in this paper; it is set to 0.1.

Experimental results are shown in Table 3.1 and Fig. 3.4; our proposed algo-

rithm performs comparably to the current state of the art, and moreover, the results

from our implementation of [9] are in line with those shown in the original paper.

Any variation in performance relative to [9] can be attributed to the fact that the

sonar used in our implementation has half the angular resolution as in [9], and we

analyze raw point clouds rather than filtered surface meshes.

When analyzing the results of different configurations of our proposed algo-

rithm, it is not surprising that in this simple case, with only a single cylindrical piling

in view, the cluster constraints provide little added value. Additionally, the trade-off

between fast and brute force methods is evident, with a slight loss of accuracy in

exchange for real-time viability.

3.4.5 Complex Object Reconstruction

Recall that to reconstruct objects using a single wide-aperture imaging sonar, the

framework proposed in [9] must make two critical assumptions; the first being that
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Algorithm MAE (cm) RMSE (cm)

Westman and Kaess [9] 2.20 2.64
Brute Force Without Clustering 2.16 2.53

Fast Without Clustering 2.34 2.76
Brute Force With Clustering 2.27 2.70

Fast With Clustering 2.35 2.83

Table 3.1: A summary of reconstruction performance corresponding to the recon-
struction of a single piling (pictured in Fig. 3.4).

the range to an object increases or decreases monotonically with elevation angle. The

consequence of an object violating this assumption is the inability to reconstruct the

geometry accurately. Moreover, [9] states that “a violation of this assumption would

cause a self-occlusion, and the corresponding pixels would presumably not be classified

as surface pixels by the frontend of our algorithm.” The second key assumption is that

the sonar is oriented at a downward grazing angle, which enables identification of an

object’s leading edge. In our proposed framework, we require no assumptions about

the geometry of the objects in view, nor do we require the sensor at a grazing angle.

In this experiment, we test our proposed algorithm on a mock-up of a critical

piece of subsea infrastructure, the blow out preventer (BOP) - approximated by a

rectangular object mounted on a cylinder. BOPs sit on the seafloor at the wellhead

during offshore drilling and are increasingly subject to regulatory scrutiny and indus-

try monitoring requirements. Critically though, like many other subsea assets, the

vertical cross-section of this object does not conform to the aforementioned geometric

assumptions.

Once again, data is collected by piloting the ROV in a circular-segment orbit

around a portion of the structure (low clearances in our tank prevent full circum-

navigation of the structure). Recall that this flight pattern keeps the structure at

a similar range and bearing while the ROV traverses to port or starboard. In this
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(a) Water Tank
Setup

(b) Isometric
view

(c) Top View (d) Side View

Figure 3.5: Results from blowout preventer mockup. Gray shows the true
structure geometry (a 9cm OD pipe, with an 82 x 82 x 45cm box, whose center is
1.2m from the bottom of pipe), and in (c), the top of the structure is not shown
for ease of visualization. Sonars were operated at 5m range, and results from our
algorithm’s “fast, clustering” configuration are shown. Color indicates height.

experiment, however, the sonar is not at a grazing angle, configured instead for max-

imum situational awareness. Unlike in the other experiments in this paper, data is

collected at a variety of depths.

A summary of the results is provided in Table 3.2 and Fig. 3.5. Not only

is our algorithm able to provide a realistic reconstruction of the object, but it can

do so within 6cm of its true geometry. In analyzing the results of this experiment,

the benefits of clustering as a constraint in feature association are evident; clustering

dramatically improves both MAE and RMSE. Again the trade-off between brute force

and fast feature-matching is evident; a small decrease in performance is required in

order to run in real-time. This trend is not evident without clustering, and the

reason for this is not known for certain, but the random guessing associated with

the fast version may be acting as a filter. The reconstruction’s appearance in Fig.

3.5 is realistic, with no evident outliers, particularly in the vertical axis. While it is

unfortunate our algorithm is unable to reconstruct the top surface of the rectangular

object, this was not surprising given the object’s sharp angles, and the occlusions

they present. From the vantage points examined, the top rectangular surface of the
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structure was imaged at much lower intensity than its front edges. We have omitted

a direct comparison with [9] for this structure in an effort not to misrepresent their

work, in a modality they explicitly state their algorithm is not intended for.

Algorithm MAE (cm) RMSE (cm)

Brute Force Without Clustering 62.29 69.39
Fast Without Clustering 30.24 45.91

Brute Force With Clustering 5.31 10.06
Fast With Clustering 5.74 12.75

Table 3.2: A summary of model reconstruction performance corresponding to the
reconstruction of the BOP mockup.

3.4.6 Field Based Object Reconstruction

The final experiment to be presented is a demonstration of the proposed algorithm

operating in the field. For this work, our ROV was deployed in the Hudson River at

Hoboken, NJ. A short inspection flight was flown at the junction of two piers with

six pilings supporting the structure close to each other. This exercise takes place at a

fixed depth and the sonars without any grazing angle. The version of the algorithm

used for this demonstration is fast, with clustering.

The results, shown in Figs. 3.1(c) and 3.6 and whose sonar images also appear

in illustrative Fig. 3.2, demonstrate that a robot employing the proposed framework

can achieve significant situational awareness, even while operating at a fixed depth.

We can recover dense 3D point clouds at every timestep, which are registered here us-

ing only iterative closest point (ICP). For the same inspection coverage to be achieved

with a profiling sonar, changes in depth would be required. Furthermore, reconstruct-

ing these pilings with a single wide-aperture sonar [9] would require a grazing angle

that would limit situational awareness. Moreover, if the vehicle is perturbed, an event

of significant likelihood given the wakes and currents encountered in this tidal river
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basin, the requirements of prior algorithms may be violated. There is another crucial

trade-off here: to extract 3D information from the sensors, a reduction in the hori-

zontal field of view to the overlapping area between sonars is required. We believe

this is a reasonable trade, though, as Fig. 3.2 demonstrates that reasonable coverage

can be achieved, even with the reduced-size portions of sonar images that overlap, at

the sensing range of 10m explored in this experiment.

(a) Outdoor Pier Pilings (b) Piling Reconstruction

Figure 3.6: Hudson River pier pilings at left with reconstruction at right (shown also
in Fig. 1(c)). Data was collected at a fixed depth, with sonars operated at 10m
range, and results from our algorithm’s “fast, clustering” configuration are shown.
Point colors indicate height.

3.5 Conclusions

In this section, we have presented a new framework for achieving dense 3D recon-

struction of arbitrary scenes using a pair of orthogonally oriented, wide-aperture

multi-beam imaging sonars. We have provided a detailed description of a pipeline for

robust feature extraction, clustering, and descriptors that facilitate accurate matching

across concurrent sonar frames. Further, we have shown quantitatively that our algo-

rithm performs competitively with the state of the art in reconstruction using a single

imaging sonar, in simple cases where a comparison is possible. Most importantly, this



29

methodology introduces a new dense sonar mapping capability for complex scenes,

and unlike previous work it requires few if any assumptions about the environment,

advancing progress toward reconstructing arbitrary geometries and cluttered scenes

with wide-aperture multi-beam sonar.

Future work will focus on using this methodology as a basis for mapping beyond

the area of explicit overlap between sonars, and incorporating this framework into a

process for robust, underwater 3D active SLAM.
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Chapter 4

Predictive 3D Sonar Mapping of Underwater Environments via

Object-specific Bayesian Inference

4.1 Problem Description

In this work, we consider 3D reconstruction using a pair of orthogonal imaging sonars

with an overlapping field of view. A robot visits a series of poses xt, with transfor-

mations T ∈ R4×4. Each pose has associated observations zt, with two components:

horizontal sonar observations zh and vertical sonar observations zv. Each set of obser-

vations is defined as an intensity image in spherical coordinates with range R ∈ R+,

bearing θ ∈ Θ, and elevation ϕ ∈ Φ, with Θ,Φ ⊆ [−π, π), and an associated intensity

value γ ∈ R+. These measurements can be converted to Cartesian space:


X

Y

Z

 = R


cosϕ cos θ

cosϕ sin θ

sinϕ

 . (4.1)

Each recorded measurement zh and zv is characterized by an omitted degree-of-

freedom (DoF), and in the robot frame, due to the orthogonality of the two sonars,

these DoFs differ:

zh = (Rh, θ, γh)⊤, zv = (Rv, ϕ, γv)⊤. (4.2)
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As in section 3, we associate measurements across concurrent, orthogonal images to

fully define the measurements in 3D, yielding Equation (4.3):

zFused =

(
Rh +Rv

2
, θ(h), ϕ(v)

)⊤

. (4.3)

However, this association can only take place within the small region of overlap be-

tween the sonars’ fields of view, equivalent in size (in both bearing and elevation)

to the sonar’s vertical beamwidth. This leaves large portions of each image with a

missing DoF and, therefore, undefined in 3D. In this work, we wish to perform a 3D

reconstruction by mapping the observations into fixed frame I as in Eq. (4.4).

M = {ẑ(I)|ẑ(I) = TẑFused ∀ ẑ ∈ ẑ} (4.4)

The information missing from a portion of all images introduces ambiguity into the

application of Eqs. (4.1) and (4.4). The question to be answered in this paper

becomes: How can we leverage the fully defined measurements from Eq. (4.3) to infer

the unknown 3D structure of the rest of the imagery, producing a more comprehensive

3D reconstruction?

4.2 Proposed Algorithm

We propose to exploit the observation of repeating objects throughout the environ-

ment, using the 3D observations occasionally obtained for specific objects, to infer

the 3D structure when those same objects are re-observed without a known elevation

angle. First, we identify objects in the sonar image and provide a semantic class la-

bel. Next, we develop a Bayesian inference model for each object class to later query

this model for points in the horizontal sonar image corresponding to that same class.



32

Note that we only apply this inference procedure to the horizontal sonar image. Due

to the shallow depths at which we operate our vehicle, the vertical image contains

fewer meaningful observations of subsea structures and is not subjected to Bayesian

inference.

Figure 4.1: System block diagram. A pair of orthogonal sonar images is provided
as input (black lines bound the region of overlap between the two sonar fields-of-
view). The images are processed according to Section IV.B. The horizontal image
is segmented as in Section IV.C (colors denote different object classes - seawall in
green, rectangular pilings in yellow, cylindrical pilings in red). The resulting 3D
points enrich each object’s model (Eq. (4.7)), while MAP inference is applied to 2D
points (Eqs. (4.8), (4.9)). We then use the planar SLAM solution to register the
resulting point cloud. The synthetic sonar images shown here are sampled from the
virtual environment depicted in Fig. 4.2.

4.2.1 SLAM Solution

In this work, we utilize a pose SLAM formulation to estimate our robot’s pose history

through time. We restrict our formulation to 3-DoF estimation in the plane to provide

an efficient and robust SLAM pipeline that prioritizes the DoFs of greatest uncertainty

(surge, sway, and yaw).

Here we formulate SLAM on a factor graph, which is solved with the aid of

GTSAM [80] and iSAM2 [81]. At each keyframe, features are extracted from our

robot’s horizontal sonar using the method described below in Sec. IV.B, and the

unknown angle ϕ is assigned as zero. The constraints relating adjacent keyframes are

estimated using iterative closest point (ICP) [82], with global initialization via consen-

sus set maximization [83] - we denote this step sequential scan matching (SSM). Loop

closures are added by applying the same scan matching process to non-consecutive
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keyframes, applying ICP to frames within a designated radius of the current keyframe

- we denote this step non-sequential scan matching (NSSM). To reject loop closure

outliers, we use pairwise consistent measurement set maximization [72]. Our factor

graph is given by

f(Θ) = f0(Θ0)
∏
i

fOi (Θi)
∏
j

fSSMj (Θj)
∏
q

fNSSM
q (Θq).

This planar SLAM solution is used to provide estimates of surge, sway and yaw

for registering our algorithm outputs to the global frame; the remaining degrees of

freedom come from our vehicle’s pressure sensor and inertial measurement unit (IMU).

Note that we will only analyze the sonar images corresponding to SLAM keyframes

to develop our 3D map. We do not analyze images between keyframes, due to the

high drift rate of our low-cost dead reckoning system.

4.2.2 Sonar Fusion System

At each time step, the robot receives a set of observations constituting a pair of sonar

images, as described in Eq. (4.2). To fully define these in 3D as denoted in Eq. (4.3),

we need to extract and associate features across the images.

Here we use a similar approach to that of our prior work in section 3, dividing

the image-feature matching problem into multiple, smaller, subproblems. Recall that

range R is discrete within a sonar image, and since associated features should be at

the same range, we use the range to define these subproblems. All features at the

same range in each sonar image are gathered and processed using intensity-based

association. The cost function used here is defined as follows:

L(zhi , zvj ) = ||νh − νv||, (4.5)
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where νh and νv are square patches of the sonar image around the given feature.

These patches have a fixed size of 5x5 pixels in this work. Note that νv is rotated

90 degrees to account for the orthogonality of the images. Moreover, before this

comparison is made, the images’ intensity values are normalized at every time step.

The cost function in Eq. (4.5) is used to find the solution that minimizes the sum of

costs between features for each subproblem.

To estimate our confidence in these matches, we compare the two best solutions

for each feature association [84]:

C =
L(zhi , zvj )min2 − L(zhi , zvj )min

Σi,j
0,0L(zhi , zvj )

. (4.6)

While we compute subproblem cost totals in order to find sets of associated features

in Eq. (4.5), confidence is evaluated on a feature-wise basis, comparing the costs for

each individual feature association made in the given solution. This gives us a simple

metric with which to cull uncertain associations.

4.2.3 Image Feature Extraction and Object Classification

To extract features from sonar imagery, we use the method employed in section 3.3.1,

used in various radar and sonar applications. The technique, smallest-of cell averaging

constant false alarm rate (SOCA-CFAR) detection [76], takes local area averages

around the pixel in question and produces a noise estimate. If the signal is greater

than a designated threshold, the pixel is identified as an image-feature.

Next, objects must be identified; for this, we utilize DBSCAN [79], since the

number of clusters in an image is not known a priori. The results from this step are

image-features clustered into objects with unknown class labels. Note that even with

a feature detector as robust as SOCA-CFAR, noise is still present. Accordingly, only
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clusters with n or more image-features are passed on to the next step.

Lastly, we must provide a class label for each object. In this work, we use a

simple neural network to perform semantic labeling of object instances. Specifically,

we use a CNN that accepts 40x40 pixel sonar image patches in grayscale, with two

convolutional layers. Inputs are generated by fitting a bounding box around each

object identified in a sonar image and resizing the bounding box into 40x40 pixels,

while preserving the object’s aspect ratio. We utilize Monte-Carlo dropout in this

CNN to reject outliers and uncertain classifications by making m predictions for each

object. In this way, we can assess the network’s confidence in its predictions, as shown

in [85]. Uncertain predictions are simply provided with a label “unknown class.” An

example of this pipeline in action is shown in Fig. 4.1.

To train this CNN, a small hand-annotated data set of representative sonar

imagery is used, which is not included in the sequences used for validation in this work.

To generate sufficient training samples to properly train the model, data augmentation

is used. We augment our data by applying Gaussian noise, random flips and random

rotations.

4.2.4 Bayesian Inference for Objects Observed in 3D

Each detected object in the horizontal sonar image is now represented by a cluster

of features with a class label. These features have a range, bearing, and unknown

elevation angle. At this step, the dual sonar fusion system provides an elevation angle

for a subset of these points, which lie inside the small region with overlapping fields

of view. These are the points we concern ourselves with in this subsection.

We assume objects of the same class will have similar geometries, as is typical

in the humanmade littoral environments, populated with piers, used to validate this

algorithm. Semantic classes are defined with this goal in mind, so that objects with
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similar geometries are grouped together.

We use a Bayesian inference framework to estimate the conditional distribution

P(zhZ |zhR, zhθ ) for each object class incrementally and online. Note that in this process,

we estimate Cartesian zZ and not elevation angle. zZ is a more accurate indicator of

the absolute, rather than relative, height at which an object is observed, since in this

work we consider scenarios in which our robot maps the environment at fixed depth,

employing planar SLAM. An object’s distribution is updated for every measured 3D

point per Bayes rule:

P (zhZ |zhR, zhθ ) =
P (zhR, z

h
θ |zhZ)P (zhZ)

P (zhR, z
h
θ )

. (4.7)

Elevation angles measured by the dual sonar fusion system are treated as measure-

ments of zhZ at the given range and bearing, corrupted with zero-mean Gaussian noise,

N (µ, σ∈), forming the measurement likelihood P (zhR, z
h
θ |zhZ). The prior, P (zhZ), is sim-

ply the existing distribution corresponding to the zhR and zhθ of the newly observed

3D point. We note that these distributions are maintained throughout the whole

time-history of the robot’s mission, so they incorporate observations from the current

frame along with observations from all previous frames. If an update has never been

performed, an initial uniform distribution is used.

At times we may view an object class at different distances and orientations;

for this reason, we register each object to a reference coordinate frame before we apply

Bayes rule in Eq. (4.7). The first time we see an object, we note its minimum range

and median bearing as the reference frame’s origin. These object points are then

maintained as a “reference point cloud” to register the object class’s future instances

to this coordinate frame. When an object is detected and its distribution P(zhZ |zhR, zhθ )

is updated, the object is first registered to the given object class’s reference coordinate
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frame using ICP. The transformed points are evaluated via Eq. (4.7) and are added

to the points used to register future object sightings to the reference frame. Our

object-specific distributions P(zhZ |zhR, zhθ ) will next allow us to predict the height of

the sonar returns observed only in 2D.

4.2.5 Predicting 3D Structure via MAP Estimation

At each time step, after the process detailed in Section IV.D is completed for the

objects measured in 3D, we again consider all objects with class labels comprised of a

minimum number of features. We now use the posterior distribution of each object’s

geometry, P (zhZ |zhR, zhθ ), to predict the height of all 2D points lacking this information.

Suppose an object belongs to a class with a posterior updated by at least one

application of Eq. (4.7). In that case, we proceed, first with registration to the object

class’s reference frame as described above, without adding new points to the reference

point cloud. Due to the sonar’s ambiguity, it may be that there is more than one true

zhZ for a given range and bearing. For this reason, we break maximum a posteriori

(MAP) estimation into two steps, as shown in Eqs. (4.8), (4.9).

zhZ = argmaxP (zhZ |zhR, zhθ ), zhZ ≤ 0 (4.8)

zhZ = argmaxP (zhZ |zhR, zhθ ), zhZ > 0 (4.9)

If one or both maxima correspond to confidence exceeding a designated threshold,

those values are adopted for inclusion in the robot’s map. Eq. (4.1) is solved to pro-

vide an output in local Cartesian coordinates, [X, Y, Z]T . This process is completed

for all objects in view – the result is a horizontal sonar image with more observations

fully defined in 3D, rather than just the few observations inside the region of dual-

sonar overlap. The observations are converted to a point cloud and registered to the
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global map frame per Eq. (4.4).

4.3 Experiments

4.3.1 Simulation Study

In this section, we utilize Gazebo [86] with the UUV simulator [87] to quantitatively

validate our method. The UUV simulator provides an implementation of [88] to

simulate wide aperture multi-beam sonar. This simulation environment allows us

to perform a quantitative study impossible with field data, where perfect ground

truth information is available. We design a humanmade, littoral environment that

resembles many marinas and waterfronts. This environment includes two differently

shaped pilings (cylindrical and rectangular), boat hulls, corrugated seawalls, and

trusses.

This work proposes an inference method that divides the world into semantic

classes by estimating each object class’s geometry. These estimates are leveraged

to perform 2D-to-3D inference over wide aperture multibeam sonar data. However,

not all objects can be treated this way. For example, a wall detected in a sonar

image will be difficult to accurately register to a reference coordinate frame, since it

may not be fully captured within a single image. Moreover, a pier piling near the

edge of a sonar image cannot be distinguished from the edge of a wall that extends

beyond the image. Conversely, objects that fit entirely inside the sonar image can be

estimated with some confidence, as the registration process described above is readily

applicable. It is for this reason that we confine our inference framework in simulation

to two classes, cylindrical and rectangular pier pilings. The remaining classes of boat

hull, truss and wall, though present in our Gazebo model, are not considered in our

predictive mapping framework. A 200-image per class hand-annotated dataset is used
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(a) 4m Keyframes, Benchmark (b) 4m Keyframes, Proposed

(c) 2m Keyframes, Benchmark (d) 2m Keyframes, Proposed

Figure 4.2: Qualitative Simulation Results. The top row and bottom row com-
pare results from 4m keyframe spacing and 2m keyframe spacing, respectively. Our
proposed method’s results are displayed in the right column in blue, and benchmark
results (without Bayesian inference) are displayed in the left column in red.

to train the CNN.

Recall that we use planar pose SLAM to provide transformations to the global

map frame. To ensure accurate mapping, only imagery from SLAM keyframes is

introduced as input to our framework. We compare two configurations of varying

density in this study, a sparse keyframe spacing of 4 meters and a denser keyframe

spacing of 2 meters. Note that in this simulation study, while we utilize the same

down-sampling as a real SLAM solution, we provide the SLAM pipeline with the

robot’s true pose in order to isolate errors to only the 3D reconstruction system. As a
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Figure 4.3: Simulation Error. On the left we show the distribution of absolute
errors for a keyframe spacing of 4m. On the right we show the distribution of absolute
errors for a keyframe spacing of 2m. Errors of our proposed method are displayed in
blue; the gold shows errors of simply registering dual sonar fusion outputs. Outliers
not shown comprise between 1.7-2.0 percent of each dataset.

benchmark for comparison we use a simple method, registering the dual sonar fusion

system’s 3D output over each keyframe, without classification or Bayesian inference.

While naive, this method represents the state of the art in 3D reconstruction with

wide aperture multibeam sonar (see section 3), while minimizing assumptions with

regard to the appearance of the environment.

For every trial, our robot navigates to each of 20 randomly sampled goals,

sequencing them using nearest neighbor; starting at a random location. Collision

avoidance is achieved using a 2D, in-plane roadmap for navigation purposes only,

which is in no way used in our 3D mapping algorithm. We use A* in conjunction

with the roadmap to generate trajectories from one goal to the next. Ten trials are run

for each SLAM configuration. Fig. 4.3 shows that our predictive 3D mapping method

has comparable error values to the benchmark 3D mapping method. Moreover, per

Table 4.1, the proposed method provides an order of magnitude greater coverage for

each SLAM configuration. Most critically though, our method with half as many

keyframes (spaced 4m apart) has an order of magnitude better coverage than the

benchmark with twice as many keyframes (2m). Qualitative results are shown in Fig.
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4.2, which clearly illustrates the improvement in point cloud density over repeating

objects, in this case the two different types of pier pilings, without impacting the

reconstruction of the trusses, boats, or seawall.

Algorithm Mean Voxel Count Std. Deviation

Standard Mapping, 4 Meter 2938.6 984.18
Semantic Mapping, 4 Meter 60091.4 20038.116

Standard Mapping, 2 Meter 3549.4 1144.72
Semantic Mapping, 2 Meter 68422.2 25518.37

Table 4.1: Simulation coverage results, where point clouds are voxelized using a
10cm grid cell resolution.

We use two metrics to quantify performance: absolute error and voxel count.

Absolute error is calculated by finding the shortest distance between a given point in

the final point cloud and the CAD model of the environment (Fig. 4.3). Voxel count

(Table 4.1) is calculated by taking the final point cloud and voxelizing it, iterating

over all the points and placing them in their respective discrete bins. If a voxel

contains one or more points, it is counted; otherwise, it is not. This study uses voxel

count to quantify coverage, while not using redundant information contained in the

point cloud.

4.3.2 Field Results

We next apply our method to real sonar data, using two datasets collected in SUNY

Maritime College’s marina on the East River in Bronx, NY. This environment repre-

sents the canonical humanmade littoral environment populated by piers, seawalls, and

steel floating docks. Further, the East River poses serious environmental challenges

such as low visibility, drastic tidal changes, and currents up to 2 knots.

To generate data, our BlueROV is manually piloted along the perimeter of
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Voxel Count
Algorithm 2m Keyframe 4m Keyframe

Standard Mapping, Pier 4147 2040
Semantic Mapping, Pier 38143 20766

Standard Mapping, Waterfront 5891 2819
Semantic Mapping, Waterfront 32131 13135

Table 4.2: Field coverage results, where point clouds are voxelized using a 10cm
grid cell resolution. “Pier” (shown in Fig. 4.4) and “Waterfront” refer to two large
structures in the SUNY Maritime marina.

structures in the marina while the vehicle heading is held near constant, with the

vehicle strafing to either port or starboard. In the 300-image, hand-annotated dataset

used to train our system, we use two classes: cylindrical pier piling and wall. Due

to the aforementioned uncertainty associated with edge features, we only apply our

inference method to the cylindrical pier piling class.

Since ground truth for mapping is not available, we analyze voxel count to

measure coverage and assess the resulting point clouds. We produce separate maps

for two structures in different areas of the marina, which we term “Pier” and “Water-

front”. Once again, our method provides a dramatic increase in coverage, mapping

many areas the benchmark leaves blank. Coverage results are shown in Table 4.2,

and detailed maps are provided in our supplementary video. An overview of the Pier

dataset is provided in Fig. 4.4. Roughly 3000 object classifications occur in this

dataset. While we only apply our inference method to one class, because this class is

constantly repeated throughout the environment, map coverage is greatly improved.

Most critically, these datasets show the utility of our method on real-world sonar data

gathered in a complex littoral environment.

https://www.youtube.com/watch?v=WouCrY9eK4o&t=75s
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(a) 3D Reconstruction without Bayesian infer-
ence

(b) 3D Reconstruction with Bayesian infer-
ence

(c) Satellite image overlay of 3D reconstruction

Figure 4.4: System Overview: (a)(b) shows a sample reconstruction from SUNY
Maritime’s marina in the East River ((a) shows raw 3D observations and (b) shows
with Bayesian inference) and (c) shows a top-down view of (b) with a satellite image
overlay, and the corresponding SLAM pose graph. Squares in (c) show AUV poses
with color corresponding to time; green lines are sequential factors; red lines are
loop closures. Note: The point cloud in (c) uses the same time mapping as the
corresponding poses, while the point cloud in (b) has color mapped to the vertical
axis.

4.4 Conclusions

In this section we have proposed using semantic classes to aid 2D-to-3D Bayesian

inference over wide aperture multibeam sonar data. We have shown through exper-

imental validation that exploiting the repeated observation of common structures in

a littoral environment can permit highly accurate predictive mapping, without the

need for CAD models a priori. In the absence of these structures, this method can

still be employed, but with reduced coverage.
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Chapter 5

Submapping for Building Dense 3D Maps of Underwater Environments

This section will describe our newest contribution to 3D mapping using orthogonal

sonar images. As noted in chapters 3 and 4, we only add to the 3D map at the

SLAM keyframes. These SLAM keyframes are only added when enough distance

or rotation has accumulated to warrant adding a new keyframe. However, sonar

imagery is available at 5 hz, leaving most of the sonar image pairs unused in the above

3D mapping systems. This motivates our newest iteration on this system, building

submaps. In this subsystem, we will retain the sonar imagery between keyframes to

build denser, more detailed 3D maps without requiring the prior information in our

inference based mapping system.

5.0.1 Submap Construction

Constructing submaps is a simple process using the dead reckoning pose ot and the

fused sonar images zFused. We note that keyframes are discrete steps in time, de-

noted by iterator k. Once a keyframe is added, we log all the zFused and their poses

relative to the most recent keyframe. A submap at step k, Sk is defined as the set of

observations between keyframes registered in the local reference frame

Sk = {T0
t ẑ

Fused
0 ,T1

t ẑ
Fused
1 ,T2

t ẑ
Fused
2 , ...,TN

t ẑ
Fused
N }. (5.1)

Note that the submap Sk, contains N the fused sonar observations, ẑFused, where

N is the number of observations until the next keyframe is instantiated. Each of

the N observations, ẑFused
i has an associated transformation, Ti

t, that registers ẑ
Fused
i
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into the keyframe’s local reference frame at step k, derived from the dead reckoning

system providing position. When considering time synchronization issues, linear in-

terpolation is used to solve for a transform between dead reckoning steps, if required.

The robot map, M can be built from the submaps as

M = {T0S0,T1S1,T2S2, ...,TtSt, }, (5.2)

where Tk is from the SLAM based pose estimate, x. The key difference between

submapping and the other mapping techniques in this paper is the collection and use

of sonar data between the time discrete SLAM keyframes. Note, this system does

require a source of accurate dead reckoning over the short term between keyframes.

This sets up the tradeoffs to be examined in the experiments section of this

paper. Is a semantic labeling model available for the environment? Are repeating

objects present? Does the vehicle has an accurate dead reckoning system? We will

compare systems using these questions and their applicability in varying use cases.

5.1 Experiments

In this section, we will perform experimental validation and comparison of three

versions of our mapping system. These systems will be referred to as below:

• Sonar fusion mapping: using only sonar image pairs at discrete timesteps as

in chapter 3.

• Inference Based Mapping: using only sonar image pairs at discrete timesteps

and inference on those timesteps, as in chapter 4

• Submapping: using sonar image pairs at and between timesteps as in this

chapter.
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We note that each method has its advantages, disadvantages, and requirements for

operation. Sonar fusion mapping may provide inadequate detail due to its generally

poor coverage. Inference based mapping improves on this but requires a trained

model to segment sonar images. Moreover, inference based mapping’s coverage rate

is correlated with the number of simple, repeating objects in the environment, for

example, circular pier pilings. Lastly, submapping will increase map coverage by

retaining the data between timesteps but requires a dead reckoning system that’s

accurate between keyframes. A summary of operational requirements is shown in

Table 5.1.

System Semantic Model Repeating Objects for High Coverage Short Term Dead Reckoning

Sonar Fusion Mapping x x x
Inference Based Mapping ✓ ✓ x

Submapping x x ✓

Table 5.1: Comparison of system requirements. We compare our three mapping
systems, each with its operational requirements. A check denotes the requirement of
a category, while an x means it is not necessarily required.

5.1.1 Hardware Overview

In order to perform real-world experiments and derive a simulation environment for

this work, we use our customized BlueROV2-heavy robot, shown in Fig. 3.1. This

vehicle is equipped with an onboard Pixhawk, Raspberry Pi, and NVIDIA Jetson

Nano for control and computation. We use a Rowe SeaPilot doppler velocity log

(DVL), VectorNav VN100 inertial measurement unit (IMU), KVH DSP-1760 3-axis

fiber optic gyroscope, and a Bar30 pressure sensor. We use a pair of wide aperture

multi-beam imaging sonars for perceptual sensors, a Blueprint subsea Oculus M750d

and M1200d. We use the M750d as our horizontal sonar and the M1200d as the

vertical sonar. Note that the entirety of this work takes place with these sonars

and their simulated versions operating at a range of 30 meters, with a 5cm range
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resolution.

In order to manage the BlueROV’s sensors, SLAM system, and companion

3D mapping system, we use the Robot Operating System [93], both for operating

the vehicle and for playback of its data. The 3D mapping algorithms are applied to

real-time playback of our data using a computer equipped with an NVIDIA Titan

RTX GPU and Intel i9 CPU. Note that all experiments take place at a fixed depth.

5.1.2 Simulation Study

In this section, we study our three mapping systems using simulated underwater

environments. We utilize Gazebo [86] with UUV Simulator [87] to simulate the envi-

ronment, vehicle, and sensors, including the wide aperture multi-beam imaging sonar

[88]. Simulated environments are selected to capture variability in complex structures

like ship hulls and aircraft and the number of repeating simple objects, such as round

pier pilings. The four environments are described below:

• Simulated Marina 1: a marina environment consisting of floating docks and

circular pier pilings. Note the heavy presence of repeating objects; the circular

pier pilings. Designed to be similar in appearance to SUNY Maritime college’s

marina in The Bronx, NY. The simulation environment is shown in Figure

5.1(a).

• Simulated Marina 2: a marina environment consisting of floating docks,

small boats, circular pier pilings, and corrugated seawall. Again, note the heavy

presence of repeating objects. Shown in Figure 5.1(b).

• Simulated Ships harbor: a harbor environment with floating docks, a long

corrugated seawall, and two large vessels. One large sailing ship and a WWI-

era cruiser. This environment only has some repeating structure. Designed to
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be similar in appearance to Penn’s Landing Marina in Philadelphia, PA. The

simulation environment is shown in Figure 5.1(d).

• Simulated Aircraft Site: a single large aircraft on the seafloor. Note that

there is no repeating structure. Moreover, this is the most complex geometry we

have examined to date. The simulation environment is shown in Figure 5.1(c).

Since our systems utilize discrete SLAM keyframes in one way or another, which are

added by distance/rotation threshold, we vary this distance and rotation denoted as

keyframe density. It is critical to vary keyframe density since this directly influences

mapping coverage. In our work, we test combinations of keyframe distance and rota-

tion. Keyframe distance [1,2,3,4,5] meters and keyframe rotation [30,60,90] degrees.

Note that we test all 15 combinations of distance and rotation.

(a) Simulated Marina 1 (b) Simulated Ma-
rina 2

(c) Simulated Plane

(d) Simulated harbor

Figure 5.1: Simulation Environments.

To study the performance of each method, we consider several metrics. Firstly

we define a coverage metric, the total number of voxels occupied when the point cloud

map is discretized. We use voxel count as a coverage metric to avoid double-counting
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redundant data in the same location. Pointcloud maps are voxelized using a 0.1-

meter voxel size. Next, we can quantify pointcloud map error using the environment

CAD model. Here we consider the absolute distance between a point in the map

and the CAD model. Accuracy is reported using mean-absolute-error (MAE) and

root-mean-squared-error (RMSE) to characterize the error distribution’s mean and

size.

5.1.2.1 Simulated Marina 1

Firstly we consider simulated marina 1. Recall that this environment contains floating

docks and many repeating circular pier pilings, shown in Figure 5.1(a). Figure 5.2(a)

shows a summary of coverage, measured in voxel count. Qualitative sonar fusion

results are shown in Figure 5.3(a), inference based mapping results are shown in Figure

5.3(b), and submapping is shown in Figure 5.3(c). For sonar fusion mapping, we note

the lowest coverage of the three methods, with coverage increasing as keyframe density

increases, left and up in figure 5.2(a). When considering inference based mapping,

the center of figure 5.2(a), we again note increased coverage with increased keyframe

density and generally improved coverage compared to sonar fusion mapping, due to

the prevalence of simple, repeating objects. However, we also note that inference

based mapping has higher coverage than submapping when the distance between

keyframes is 1 meter. When considering submapping, on the right of figure 5.2(a),

coverage is generally flat across keyframe density, and coverage is higher than other

methods, except when the inference based mapping system is applied in the densest

keyframe category.

Again, we consider mapping error by comparing the point cloud map to the

simulation environment CAD file. Mapping error is reported in table 5.2. We note

that mean mapping error is similar across all three methods in simulated marina 1,
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(a) Simulated Marina 1 (b) Simulated Marina 2

(c) Simulated harbor (d) Simulated Plane

Figure 5.2: Simulation coverage results. Coverage in both table and color format.
Each cell reports voxel count, with color mapping from blue to orange as low to high
coverage. The vertical axis shows the varying keyframe rotations in degrees, with the
horizontal axis showing the Euclidean distance between keyframes in meters. Each
system type is shown in this figure, with sonar fusion mapping at left, inference based
mapping at center and submapping at right.

with submapping having a slightly smaller RMSE.

5.1.2.2 Simulated Marina 2

Next, we consider simulated marina 2, shown in Figure 5.1(a). Recall that this

environment contains floating docks, small boats, many repeated circular pilings, and

corrugated seawalls. Coverage results for simulated marina 2 are shown in Figure

5.2(b). Qualitative results are shown in Figures 5.3(d), 5.3(e) and 5.3(f). Again we

see a similar trend; sonar fusion mapping shows the least coverage, with inference

based mapping improving due to the repeating objects in the environment. However,

inference based mapping only improves coverage over submapping when keyframes

are 2 or fewer meters. Submapping again shows a generally flat performance in all

keyframe densities. When considering mapping accuracy, we note comparable MAE,

with slight RMSE change when moving to submapping. Simulated marina 2 accuracy
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results are shown in figure table 5.2.

5.1.2.3 Simulated Ships harbor

This simulated ship’s harbor contains only a few repeating objects, floating docks, a

long corrugated seawall, and two ships, shown in Figure 5.1(d). Qualitative results

are shown in Figures 5.5(d), 5.5(e) and 5.5(f). When considering the coverage in this

environment, shown in Figure 5.2(c), we note a smaller coverage gap between sonar

fusion mapping and inference-based mapping due to the reduced prevalence of simple

repeating objects for the inference base mapping system to leverage. Additionally, we

note that submapping outperforms inference based mapping in all keyframe density

cases. The performance difference between submapping and inference based mapping

is likely a combination to two key reasons—first, the lack of repeating objects in the

environment. Second, the complex geometry of ship hulls is difficult to map using only

keyframes; submapping uses the data at and between the keyframes, enabling denser

mapping of complex structures. When considering the simulated harbor environment

error reported in table 5.2 we note similar means, with submapping having a larger

RMSE.

5.1.2.4 Simulated Aircraft Site

This environment consists of one large structure, a WWII-era B-24 Liberator sitting

on the seafloor, shown in Figure 5.1(c). We use this structure as it presents highly

complex geometry not previously analyzed with our mapping systems. Further, it

does contain any repeating objects, only one large structure, the aircraft. This spe-

cific aircraft is selected due to its distinctive dual tail arrangement, which, if mapped

correctly, will be easily recognizable. Qualitative results are shown in Figures 5.3(g),

5.3(h) and 5.3(i). Coverage results are shown in Figure 5.2(d). Due to the total lack of
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repeating objects in this environment, there is a negligible coverage difference compar-

ing the inference-based mapping system to the sonar fusion map. When considering

the submapping system, Figure 5.2(d) shows a coverage improvement compared to

the other two systems. Most importantly though, when considering the qualitative

results in Figure 5.3(i), there is a more complete representation of the aircraft’s main

wing and tail section. Regarding map accuracy, shown in table 5.2, we note similar

means with the submapping RMSE slightly larger.

Environment
Marina 1 Marina 2 Harbor Plane

System MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Sonar Fusion Mapping 0.16 0.21 0.19 0.25 0.21 0.30 0.17 0.24
Inference Based Mapping 0.16 0.20 0.17 0.22 0.22 0.30 0.17 0.24

Submapping 0.14 0.17 0.16 0.19 0.26 0.37 0.21 0.28

Table 5.2: Simulated mapping accuracy in meters. We report aggregated results
for each system in each environment. MAE and RMSE are both reported in meters.

Environment
Marina 1 Marina 2 Harbor Plane

System Mean SD Mean SD Mean SD Mean SD

Sonar Fusion 0.088 0.018 0.080 0.011 0.086 0.014 0.075 0.010
Mapping Inference 0.617 0.267 0.529 0.387 0.277 0.172 0.233 0.193

Submap Construction 0.005 0.009 0.001 0.003 0.006 0.010 0.001 0.003

Table 5.3: Runtime in seconds. We report mean and standard deviation (SD)
runtime for all experiments for a particular system in each environment. Sonar fusion
refers to the proccess of fusing a single sonar image pair. Mapping inference is the time
required to apply the method in chapter 4 to a single keyframe. Submap construction
is the time required to assemble a submap from a single timestep once all the data is
collected.

5.1.2.5 Summary of Simulation Results

The results of the simulation study can be summarized as follows. Firstly the sonar

fusion mapping system provides accurate maps but potentially low coverage, espe-
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cially when keyframe density is sparse. However, the sonar fusion mapping system has

the least system requirements of the three compared methods, requiring no trained

semantic model, no repeating objects to enhance coverage, and no short term dead

reckoning system. Next, the inference based mapping system makes coverage im-

provements in three out of four environments compared to sonar fusion mapping. We

note that this increased mapping coverage is due to the presence of simple repeating

objects to perform object-specific inference using a trained semantic labeling model.

Lastly, submapping only outperforms inference based mapping when there are few if

any, repeating objects in the environment. However, submapping recovers reasonably

accurate, high-coverage maps in cases where the structures are complex. It is essential

to note the value of submapping when potentially deploying an autonomous system

to an unknown environment. Dense, 3D maps can be recovered with no prior infor-

mation regarding the environment. Moreover, in the case of complex 3D geometry,

parts of the structure can be mapped that the other systems in this paper miss, such

as the wing of the airplane shown in Figure 5.3(i).

When considering runtime, reported in table 5.3, we provide both mean and

standard deviation (SD) in seconds. In the row marked “orthogonal sensor fusion”

in table 5.3, we provide the time required to fuse a single pair of sonar images, not

build a map. We note that this runtime is sufficient to keep pace with the simulated

sonar sensor, which runs at 5hz (0.2 seconds). The row marked “Mapping inference”

in table 5.3 records the time required to apply the inference based mapping system

to a single keyframe. We note that runtime for this category is slower when repeating

objects are present. Moreover, a key detail some readers may note is that we do

not apply the inference systems to data between keyframes. While the runtime is

sufficient to keep up with the addition of keyframes, applying this method to the N

sonar image pairs between keyframes would be impractical. Lastly, when considering
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the runtime of the “submap construction” row in table 5.3, this is the required time

to construct a submap once all the data is collected between keyframes. We note that

this process is low runtime and does not add undue computation to our system.

(a) Marina 1 SF (b) Marina 1 IB (c) Marina 1 S

(d) Marina 2 SF (e) Marina 2 IB (f) Marina 2 S

(g) Plane SF (h) Plane IB (i) Plane S

(j) harbor SF (k) harbor IB (l) harbor S

Figure 5.3: Simulation Environment Mapping Results. Each column shows one
of our three methods. Sonar fusion mapping (SF), inference based mapping (IB) and
submapping (S).

5.1.3 Real World Study

This section will showcase three experiments with real-world data collected with our

robot. In this real-world case study, ground truth data is unavailable, so we will
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analyze only coverage and runtime using the same means as the simulation study.

The three environments are SUNY Maritime College’s marina in The Bronx, NY,

and Penn’s Landing marina in Philadelphia, PA and a marina adjacent to Norfolk

Naval base in Norfolk, VA. SUNY Maritime is shown in Figure 5.6(a) and from

satellite view in Figure 5.6(b), note the heavy presence of circular pilings, repeating

simple objects. Penn’s landing is shown in Figure 5.6(c) and from satellite view in

Figure 5.6(d), note the presence of several large complex structures and few repeating

objects. Norfolk is shown in Figure 5.6(e) with satellite view show in Figure 5.6(f).

Note that this environment has two long edge structures, the concrete wall on the left

of the marina and the long floating dock on the bottom, with the rest of the structure

being repeating pier pilings.

(a) SUNY Maritime College (b) Penn’s Landing

(c) Norfolk

Figure 5.4: Real world coverage results. Coverage in both table and color format.
Each cell reports voxel count, with color mapping from blue to orange as low to high
coverage. The vertical axis shows the varying keyframe rotations in degrees with
the horizontal axis showing Euclidean distance between keyframes in meters. Each
system type is shown in this figure, with sonar fusion mapping at left, inference based
mapping at center and submapping at right.
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(a) SUNY Maritime
SF

(b) SUNY Maritime
IB

(c) SUNY Maritime S

(d) Penn’s Landing SF (e) Penn’s Landing IB (f) Penn’s Landing S

(g) Norfolk SF (h) Norfolk IB (i) Norfolk S

Figure 5.5: Real World Results. Each column shows one of our three methods.
Sonar fusion mapping (SF), inference based mapping (IB) and submapping (S).

5.1.3.1 SUNY Maritime Results

At SUNY Maritime college, we see a coverage trend consistent with our simulation

experiments, shown in Figure 5.4(a). Qualitative results are shown in Figures 5.5(a),

5.5(b) and 5.5(c). Inference based mapping makes significant coverage improvements

over fusion based mapping. Moreover, submapping shows good coverage, better than

fusion based mapping. However, inference based mapping shows better coverage

results than submapping with its densest set of keyframes. Note that SUNY Maritime

has very little complex structure and is characterized by many repeating pier pilings,

an excellent use case for inference based mapping.
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5.1.3.2 Penns Landing Results

Penn’s Landing has very few repeating objects but more complex structure and our

trajectories include a ship hull and barge. Qualitative results are shown in Figures

5.5(d), 5.5(e) and 5.5(f). Figure 5.4(b) shows coverage results from Penn’s Landing.

We note the small performance improvement in inference mapping compared to fusion

based mapping, likely due to the small number of repeating objects. Submapping

shows the highest coverage in this environment and is flat across varying keyframe

densities. Note the dense point clouds recovered from the barge and ship in Figure

5.5(f).

5.1.3.3 Norfolk Results

Norfolk shows a similar trend to SUNY Maritime college and our simulation experi-

ments, as shown in Figure 5.4(c). The presence of repeating objects means inference

based mapping is able to recover the most dense version of the map, but submapping

is consistent across all parameterizations. We especially note the increase in coverage

on the concrete wall at the back of the map when using submapping, shown in 5.5(i).

We do note some rotational distortion, likely due to gyroscope error.

5.1.3.4 Real World Runtime

Table 5.4 shows the runtime for these real-world datasets. Submap construction again

does not add undue computational burden to our system, and performing inference

on keyframes takes time, making it clear that inference should only be applied to

keyframes. Orthogonal sensor fusion time runs faster or near the sonar refresh rate

of 5hz.
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5.1.3.5 Real World Results Summary

These real-world datasets make the results of this study clear; when repeating objects

are present, and a semantic model can be provided to leverage those objects, inference

based mapping provides excellent coverage. However, when a model is unavailable

or when these repeating objects are not prevalent, submapping provides better cov-

erage, especially when considering complex objects like ship hulls. However, sonar

fusion mapping provides adequate results when neither a model nor a short-term dead

reckoning system is available.

Environment
SUNY Maritime Penn’s Landing

System Mean SD Mean SD

Orthogonal Sensor Fusion 0.172 0.030 0.207 0.024
Mapping Inference 0.947 0.251 0.405 0.253

Submap Construction 0.003 0.005 0.003 0.003

Table 5.4: Real world runtime in seconds. We report mean and standard devi-
ation (SD) runtime for all experiments for a particular system in each environment.
Orthogonal sensor fusion refers to the proccess of fusing a single sonar image pair.
Mapping inference is the time required to apply the method in chapter 4 to a single
keyframe. Submap construction is the time required to assemble a submap from a
single timestep once all the data is collected.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Real world environments. (a) shows our experimental setup at SUNY
Maritime college. (b) shows a satellite image of (a). (c) shows a ground level view
of Penn’s landing with (d) showing a satellite view. (e) shows a ground level view of
the marina in Norfolk, VA with (f) showing a satellite image view.
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Chapter 6

Overhead Image Factors for Underwater Sonar-based SLAM

6.1 Problem Description

We formulate a three degree-of-freedom planar SLAM problem across discrete time

steps t, each with an associated pose xt. We define each pose in the plane as

xt =

(
x y θ

)⊤

. (6.1)

Each pose has a set of observations zt. The observations include sonar returns in

spherical coordinates with range R ∈ R+, bearing θ ∈ Θ, and elevation ϕ ∈ Φ, with

Θ,Φ ⊆ [−π, π), and an associated intensity value γ ∈ R+. These observations can be

mapped into Cartesian space by


X

Y

Z

 = R


cosϕ cos θ

cosϕ sin θ

sinϕ

 . (6.2)

Additionally, each set of observations zt includes odometry information: linear veloc-

ity V ∈ V+, linear acceleration A ∈ A+ and rotational velocity W ∈ W ⊆ [−π, π).

The robot moves through the environment at fixed depth, transitioning from

state to state according to the dynamics

xt = g(ut, xt−1) + δt, (6.3)

where xt−1 is the pose at the previous timestep, ut is the actuation command and δt
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x x x

x xx

OI

SSM factor NSSM factor OI factor

Figure 6.1: SLAM Factor Graph. Robot poses x are connected by three kinds
of factors: sequential scan matching factors (SSM) in green, non-sequential scan
matching factors (NSSM, or loop closures) shown in red and overhead image factors
(OI) shown in blue.

is process noise. The posterior probability over the time history of poses is defined as

p(x1:t,m|z1:t, u1:t), (6.4)

with map m. The question addressed in this work, is how we can leverage the pro-

vided observations, in conjunction with reasonable prior information, to improve state

estimation.

6.2 Proposed Algorithm

6.2.1 Sonar Image Processing

As described in Section III, each sonar observation contains a set of returns of varying

intensity, in spherical coordinates, which are recorded in a 2D image. However, we

must identify which points in the image are true sonar contacts and which are noise

and/or second returns.

In this work, we utilize constant false alarm rate (CFAR) detection [76] to

identify returns from the surrounding environment in the sonar imagery. CFAR has
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Figure 6.2: System block diagram. The overhead imagery is segmented offline,
before the mission. As the mission progresses, a candidate overhead image is retrieved
using the current state estimate. Raw sonar images are segmented using CFAR de-
tection. Candidate overhead and segmented sonar images are presented in a query to
U-Net. ICP is then applied, to register U-Net’s synthetic image output to the globally
referenced candidate overhead image. If there is enough overlap, the measurement is
added to the factor graph.

been widely successful in radar and acoustic image processing [77], [78], and has

supported our prior work. Specifically, we use the smallest-of cell averaging (SOCA)

variant of CFAR, which takes local area averages around the pixel in question and

produces a noise estimate. If the signal is greater than a designated threshold, the

pixel is identified as an image-feature. An example of its output is shown in Fig.

6.3(b); this perceptual data product is used to support SLAM throughout the work

described in this paper. This is described in more detail in section 3.3.1.

All CFAR-extracted points in the image are converted to Cartesian coordinates

(Eq. (7.2)). Because we confine our state to the plane, and because the elevation

angle ϕ in Eq. (7.2) is not recorded in our sonar imagery, we set ϕ as zero.
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(a) Simulated Sonar Image (b) CFAR Image from (a)

(c) Candidate Overhead Image (d) Example Predictions

Figure 6.3: Example Images: (a) A sonar image from our simulation environment,
(b) the CFAR-segmented sonar image, (c) the corresponding candidate overhead im-
age, and (d) the prediction of (b)’s appearance at the surface, from U-Net’s processing
of (b) and (c).

6.2.2 Overhead Image Processing

We segment the available overhead imagery into three classes: water, structures, and

vessels. We then generate a binary mask of the overhead imagery; pixels comprising

static structures are set to 1, and all others (water and vessels) are set to 0. An

example of this mask is shown in green at the top left of Fig. 6.2. At each time-step,

we carve out of the binary mask a footprint representing the sonar field of view at

the respective pose estimate, shown at top right of Fig. 6.2, and Fig. 6.3(c). This is

performed using the current SLAM solution, in conjunction with the robot’s known

initial pose at the outset of the mission, to estimate the robot’s current pose within

the overhead imagery. The resulting image is referred to in this paper as the candidate

overhead image.
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Figure 6.4: Network Overview. We utilize a U-Net architecture to generate syn-
thetic overhead imagery predicting the above-surface appearance of an input sonar
image’s contents. The inputs to the network are a processed sonar image contain-
ing CFAR-detected features, and a candidate (partially overlapping) overhead image,
each with the same spatial area. Input images are 256x128 pixels.

6.2.3 Learning a Unified Representation

Key challenges to overcome in registering a sonar image to a candidate overhead image

are the differences in perspective, contents, and modality. In general, an environment

contains two kinds of structures: static structures, such as walls and docks, and

dynamic structures, such as boats, which even when stationary, may be docked in

different locations at different times. In this work, we assume dynamic structures

may have moved between the time the overhead image was captured and the time of

the mission, but not during the mission. Moreover, while overhead images contain

RGB channels, sonar images only contain acoustic intensity, not necessarily related

to the RGB channels of a given object.

These fundamental differences are what make registering a sonar image to an

overhead RGB image challenging. For this reason, we propose to learn a unified

representation that will aid in the registration problem. The first of our inputs is

the candidate overhead image, with an example shown in Fig. 6.3(c). The second

input is the sonar CFAR image, with an example shown in Fig. 6.3(b). These two
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images are stacked channel-wise into a single image as shown at left in Fig. 6.4.

Note that these images may have a non-zero transformation between them, as the

state estimate may or may not have drifted. We would like to emphasize that their

initial alignment does not need to be perfect, but simply provide reasonable overlap

between the sonar image and candidate overhead image. The network output is the

static structure observed in the overhead image transformed to the sonar image’s

frame; a synthetic overhead image. We utilize a well-known network architecture,

U-Net [89], to learn the mapping between input and output with the addition of

dropout layers. The key advantage of this method is learning a unified representation

(a prediction of the above-surface appearance of the structures observed by the sonar)

that can be registered to overhead imagery, offering the same perspective, contents

and appearance as overhead imagery.

6.2.4 Acoustic Image Registration

We can now attempt to register the network output, a synthetic overhead image,

to the candidate overhead image. To do so we first convert the images from pixels

to meters. Next, we extract the outline of any structure present and apply voxel-

based down-sampling to reduce the number of points. We then use ICP to estimate

the transformation between the candidate overhead image points and the predicted

synthetic overhead image points.

The resulting transformation is used to estimate the overlap between the two

sets of points; if the overlap does not exceed a designated threshold, it is considered

to be a bad registration and discarded. Overlap is evaluated by applying nearest-

neighbor association and counting the percentage of points in the source cloud with

a Euclidean distance of less than one meter to their neighbor. Note that here we do

not apply PCM as a means of outlier rejection, as it is simply not required; the level
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of noise and ambiguity is not as severe as for standard loop closure detection. If the

overlap is sufficient, then the ICP-derived overhead image transformation is added to

the current SLAM state estimate to derive the transformation between the initial pose

and the current pose. We then add this overhead image factor to our factor graph,

linking the initial and current pose. For the sake of generality, the factor graph in

Fig. 7.2 shows an overhead image frame that can be associated with any point of

reference, not just the initial robot pose.

6.3 Experiments and Results

6.3.1 Data Gathering

To train our CNN, a significant amount of labeled data is required. While the authors

of [46] and [47] use a sonar dataset with known locations from GPS, this data is not

fully publicly available and is limited in scope, as it comes from a single environment

with few dynamic structures. We perform a simulation study due to the lack of avail-

able data from underwater settings with ground truth, and our inability to perform

new large-scale field experiments during the COVID-19 pandemic. Using a simulator

allows us to generate a diverse body of relevant labeled imagery for our CNN, and

to evaluate SLAM performance, as ground truth is known. Moreover, we will later

demonstrate our algorithm’s applicability to real-world data after being trained in

simulation. Future work will focus on validating this methodology on real data from

complex trajectories in large-scale environments with ground truth.

To generate training data we use two environments, one resembling a marina

(Fig. 6.6(g)), and another of a ship’s pier (Fig. 6.6(h)). To generate validation data,

and to evaluate our SLAM solution, we design two other marina-like environments

different from the first, shown in Figures 6.6(i) and 6.6(j). To gather data, we place
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the vehicle at a random, collision-free pose and capture a sonar image. We then

generate a random transformation in-plane, with translations up to 5 meters and ±

22° yaw. We then capture a candidate overhead image at the random transformed

pose. Labels are generated by capturing a candidate overhead image at the same pose

as the sonar image. We generate 5000 samples from each training environment and

2500 samples from the validation environment in Fig. 6.6(i) for ROC curve analysis.

The environment in Fig. 6.6(j) is used separately to evaluate long-duration SLAM

performance.

Each training dataset requires a segmented overhead image of the full envi-

ronment, for generating candidate overhead images as described in Section 5.2.2.

Overhead images of each environment are generated at an altitude of 60 meters using

a simulated camera. The aforementioned overhead image segmentation (structure,

water, vessels) is generated by hand labeling, as shown at the top left of Fig. 6.2.

It may be desirable for this step in the process to be fully automated, but we also

contend that with environments of this size, it may often be a reasonable cost to

human AUV operators in the mission planning step, especially for settings that will

be visited frequently. Moreover, deep learning methods for image segmentation in

this setting are growing in maturity [90]. Therefore, we confine the technical scope

of this paper to include pre-segmented overhead imagery, as its preparation is simply

a part of the mission planning process (automated or not), and not an integral part

of the live functionally of the proposed algorithm.

6.3.2 CNN Training

Using the gathered dataset, we implement the model architecture illustrated in Fig.

6.4 using TensorFlow [91]. The model is trained for 10 epochs using a categorical

cross-entropy loss function and the Adam optimizer [92]. We evaluate our model
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Figure 6.5: Training ROC Curves. Orange shows validation results without data
augmentation; black shows validation results with data augmentation; the legend
reports the area under the curve (AUC).

using the validation dataset. We note that our validation environment (pictured in

Fig. 6.6(i)) has a difference in static structure, and its vessels are all in new locations,

relative to the training environments. To quantitatively measure model performance

we use receiver operator characteristic (ROC) curves, shown in Fig. 6.5. To increase

validation performance, we perform two types of simple data augmentation. First,

we randomly flip each set of images. Secondly, we introduce Gaussian speckle noise

to the set of input images. More advanced data augmentation (rotations, etc.) is not

used to preserve the contents of each data point, as our imagery is often sparse on

the sonar side.

6.3.3 SLAM Performance Metrics

To evaluate the performance of a SLAM framework aided by overhead image factors,

we consider two key metrics, mean absolute error (MAE) and root mean squared error

(RMSE). These metrics are chosen to not only characterize the mean of the error

distributions but the goodness of fit the SLAM solution provides with respect to the

true trajectory. We consider both the Euclidean distance of our SLAM estimate from

the corresponding true pose, and the difference in estimated yaw angle θ from that of

the true pose. Note that we do not consider the global pose, but the pose relative to

the initial keyframe, ensuring a fair comparison across competing algorithms. In the
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results to follow, sonar imagery is sampled at 5Hz, and as in [71], sonar keyframes

are generated upon every 2m of translation or 30° of rotation.

6.3.4 Simulated SLAM Results

In addition to sonar imagery, our SLAM method requires a source of dead reckoning,

in this case, a simulated DVL and IMU. Zero mean Gaussian noise is introduced into

these sensors with σvelocity and σtheta as 0.1 m/s and 1° respectively. These values

are chosen as they produce results similar to those experienced in the field with our

baseline method. Lastly, the proposed method requires a robot position fix defined

within the overhead imagery. We denote this as the overhead image frame, which we

choose to coincide with the location of the robot’s initial pose, defined with respect

to the overhead imagery. Each mission is initialized by applying zero-mean Gaussian

noise to the true initial pose using σtheta, and σxy of 1 meter. Note that in a real world

mission, we believe this information could be easily sourced by collecting an initial

GPS fix at the surface, at the beginning of a mission. Recall that we use point-cloud

overlap as a means of outlier rejection, and for this simulation study, the minimum

required overlap to accept an overhead image factor is 80%.

Equipped with a trained CNN, we can apply our full proposed pipeline to the

validation environment of Fig. 6.6(i). To evaluate our SLAM system we generate

two “fly-through” trajectories at a fixed depth of approximately 1 meter; one transits

from left to right and the other from right to left. This style of trajectory is selected

since it efficiently transits the environment, while observing nearly all structures in

the marina along the way. Using these two trajectories, we evaluate our proposed

SLAM method as well as a baseline method, which is simply our SLAM method

without the addition of overhead image factors.

Secondly, in order to evaluate the efficacy of our algorithm over long distances,
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Fly Through Long Distance
Metric Proposed Baseline Proposed Baseline

Euclidean Error
MAE (meters) 0.83 2.06 0.87 3.13
RMSE (meters) 0.95 2.29 0.93 3.17

Yaw Angle Error
MAE (degrees) 1.70 5.95 3.65 3.98
RMSE (degrees) 2.09 6.48 10.5 10.27

Table 6.1: SLAM Results. MAE and RMSE. “Fly through” refers to the two bench-
mark trajectories in validation environment one as in Fig. 6.6(i). “Long distance”
refers to the 2.7km transit through validation environment two shown in Fig. 6.6(j).

we run a 2.7-kilometer “long distance” trajectory using the simulation environment

shown in Fig. 6.6(j). This trajectory is generated by looping around the environment

ten times. With overhead image factors, an improvement is shown in position accu-

racy, with a comparable yaw angle to the benchmark; results are summarized in Table

6.1. We note that no modifications are made to our implementation when running

the long-distance trajectory experiment, and online performance is still achieved.

6.3.5 Real World SLAM Results

While we confine our quantitative case study to simulation, we demonstrate the

promise of future work by testing our system on real data. Due to restrictions re-

sulting from the COVID-19 pandemic, gathering a new large-scale, ground-truthed

dataset for this study was not possible; instead, previously-gathered datasets were

utilized. These feature data collected with our custom BlueROV2 in two marina en-

vironments: the SUNY Maritime College marina on the East River in The Bronx,

NY and the U.S. Merchant Marine Academy (USMMA) on the Long Island Sound

in Kings Point, NY. Our training maps, shown in Figs. 6.6(g) and 6.6(h), are in-

tended to capture the general appearance of these environments. These real-world



71

environments pose several challenges to our overhead image factor system. Firstly,

we train in simulation, and it is unknown how well our trained CNN will generalize to

the real world. Secondly, the simulator, while realistic, is a controlled environment.

Moreover, our real-world settings present environmental challenges, such as currents

up to 2kts.

The datasets are recorded at a fixed depth of approximately 2m for SUNY

Maritime and 1m for USMMA. Overhead imagery is hand segmented and provided

to the system a priori, in addition to the robot’s initial location in the imagery.

The initial location was determined by manual alignment. Again we use point-cloud

overlap as a means of outlier rejection, and for these field datasets, the minimum

required overlap to accept an overhead image factor is 95%.

At SUNY Maritime, we consider an “out and back” trajectory where the robot

moves away from its starting location and returns along a similar path within close

proximity of the starting location. Baseline results for SUNY Maritime are shown in

Fig. 6.6(d). Although our system was trained in simulation, it contributes several

overhead image factors, mitigating the drift compared to the baseline method as

shown in Fig. 6.6(c). The baseline method mainly shows drift in θ, and even though

several loop closures occur, error still accumulates in the map.

At USMMA, we consider a different trajectory, a straight-line transit where

no loop closures occur in the standard SLAM solution. We consider this type of

trajectory to demonstrate the utility of overhead image factors, which can correct

drift even when loop closures are unavailable. The drift of the baseline trajectory,

shown in Fig. 6.6(f), results in a highly inaccurate map. Once again our system,

trained only in simulation, can contribute several overhead image factors that improve

the state estimate, as shown in Fig. 6.6(e).

We wish to underscore the significance of these results and the potential of the
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proposed framework. Although the system was trained in simulation, it can, and in

these two environments, does generalize to real sonar data. However, we are keenly

aware of the challenges associated with deploying deep learning methods in the field.

Future work will focus on expanding our methodology and testing on more significant,

more complex trajectories and developing a ground-truthed dataset.

6.3.6 Computation Time

Our framework results in the following sources of additional computational overhead:

a single GPU query, a single ICP query, and a single instance of overlap estimation

per keyframe, which are implemented in a multi-threaded manner. If an overhead

image factor is detected, the result is passed to the SLAM thread, where it is added

to the factor graph. The result is a SLAM system that runs faster than keyframes

are added. A runtime test of our overhead image factor system, which encompassed

network prediction, ICP, and overlap estimation, yielded a rate of 55Hz, which is

above and beyond the requirements of sonar keyframe processing. This test was

performed over the 2500 examples from our validation set. These experiments were

conducted using an Intel i9-9900K CPU @ 3.60GHz and an Nvidia Titan RTX GPU.

6.4 Conclusions

In this work, we have presented a novel method for addressing drift in a sonar-based

underwater SLAM solution, using overhead image factors. We have shown that our

method provides significant added value in terms of pose estimation error. Moreover,

we do not use complex prior information such as environment CAD models. Instead

we use data that can be sourced from the public domain, and an initial position fix.

Additionally, we do not attempt to localize a robot using only an overhead image; we
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use all of the available information in conjunction with state-of-the-art sensor fusion

methods [80] to build a robust and low drift state estimate. We do concede that this

method is mostly applicable in littoral environments, where structures are observable

above and below the water. However, we would contend that this represents many

AUV/ROV applications, such as hull inspection, harbor security, and operating near

offshore structures. In this work, we train and evaluate primarily in simulation.

Future work will focus on developing the data (simulation and real) to extend this

work to more extensive, outdoor, real world environments in the littoral zone.
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(a) Example simulated
SLAMmission with over-
head image factors

(b) Example simulated
SLAM mission without
overhead image factors

(c) Example real-world SLAMmis-
sion with overhead image factors at
SUNY Maritime

(d) Example real-world SLAM
mission without overhead image
factors at SUNY Maritime

(e) Example real-world SLAMmis-
sion with overhead image factors at
USMMA

(f) Example real-world SLAM mis-
sion without overhead image fac-
tors at USMMA

(g) Training envi-
ronment one

(h) Training envi-
ronment two

(i) Validation envi-
ronment one

(j) Validation envi-
ronment two

Figure 6.6: Example outcomes: (a) SLAM mission with overhead image (OI) factors,
and (b) the same trajectory without OI factors. The gray background of (a) and (b) shows
the OI mask; grid boxes are 5m. (c) Results from the SUNY Maritime dataset using the
proposed OI system, and (d) results without OI factors using the same trajectory shown
in (c). (e) Results from USMMA with OI factors, and (f) results from the same trajectory
without OI factors. SSM factors are shown as green lines, loop closures are shown as red
lines, and OI factors are shown as blue lines. Poses are shown as boxes, where color changes
with time. The planar point cloud map utilizes the same color scheme as the poses the points
are derived from. (g),(h) Our simulation training environments, and (i),(j) our validation
environments.
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Chapter 7

DRACo-SLAM: Distributed Robust Acoustic Communication-efficient

SLAM for Imaging Sonar Equipped Underwater Robot Teams

7.1 Problem Description

In this work we consider a team of robots N . Each robot n ∈ N maintains its

own SLAM solution, in its own reference frame In. Each robot receives a set of

observations zn,t at a given pose xn,t across discrete time steps t. Each robot pose is

defined in the plane (fixed depth) as

xn,t =

(
xr yr θr

)⊤

. (7.1)

Each set of observations consists of sonar returns in spherical coordinates with ranges

r ∈ R+, bearings θ ⊆ [−π, π), elevation angles ϕ ⊆ [−π, π), and associated intensity

values γ ∈ R+. These sonar observations can be mapped into Cartesian coordinates

by


x

y

z

 = r


cosϕ cos θ

cosϕ sin θ

sinϕ

 . (7.2)

Each robot moves through the environment according to the dynamics

xn,t = g(un,t,xn,t−1) + σn,t, (7.3)
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where xn,t−1 is the previous timestep’s pose, un,t is the control command and σn,t is

process noise. The posterior probability over the time history of poses is defined as

p(xn,1:t,mn|zn,1:t,un,1:t), (7.4)

with map mn. While we consider a distributed multi-robot SLAM solution, there

is no initial transform between each of the reference frames In. This work aims to

use each robot’s observations to derive inter-robot loop closures and estimate team

member trajectories in each robot’s reference frame.

7.2 Algorithm

This section will provide the technical details of our distributed multi-robot SLAM

system. An overview of this system from the perspective of one robot is shown in

Fig. 7.1. Each robot logs messages from team members, using a k-d tree to search for

potential inter-robot loop closures. We then attempt registration and reject outliers.

Inter-robot loop closures are added to the factor graph and broadcast to the rest of the

team. The pose graph is optimized, and significant state changes are communicated

to the rest of the team.

7.2.1 Sonar image processing

At each pose, xn,t, the sonar observations zn,t consist of a sonar image. The 2D image

is populated with acoustic intensity values. However, not all the pixels in the image

represent contact with structures in the environment. Our first step is to identify

which pixels constitute a sonar contact and which do not. We use constant false

alarm rate (CFAR) detection, [76] which is derived from radar processing and has

supported our previous work [3].
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Figure 7.1: System diagram for a single robot. Each robot maintains a message
pool of received scene descriptors. Based on k-d tree search, registration is attempted
and outliers rejected. Inlier inter-robot loop closures are added to the pose graph and
sent to team members. Large SLAM corrections are also sent to team members.

Once contacts are identified, the pixels are mapped to meters as an in-plane

point cloud. Note that while imaging sonar observes a 3D volume of water, the sensor

does not return 3D information, only a 2D projection with ϕ as zero. The consequence

is that our system is confined to fixed depth, in-plane pose estimation. The point

cloud is subject to voxel down-sampling, with each voxel’s output being the medoid

of the contained points. Example point clouds are shown in Fig. 7.5.

7.2.2 Point Cloud Compression

In this work, each point in a point cloud is a pair of 32-bit floating points (x,y),

which may overwhelm the data link. For this reason, we consider a simple voxel-
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based compression algorithm. We take a point cloud, cast it onto a planar voxel grid,

and only retain centers of occupied voxels. This compression is performed first by

discretizing each point, px,y, to a designated resolution, ∆compression.

pi,j ≈
px,y

∆compression

(7.5)

Note that the pi,j are discrete. Each cell in the voxel grid is populated according

to Eq. (7.5). If a voxel contains a non-zero number of points, then that voxel’s

center is recorded for transmission. In our implementation, each voxel center is a pair

of 8-bit unsigned integers, offering significant savings over a pair of 32-bit floating

points. This compression, though, results in a loss of some geometric information.

Our experiments will evaluate compression efficacy by characterizing SLAM error and

network utilization in Section V.

7.2.3 Single robot SLAM

For multi-robot SLAM, first, each robot must estimate its state. We utilize the

vehicles’ onboard Doppler velocity log (DVL) and inertial measurement unit (IMU)

with the uncompressed point clouds from Section IV-A. We formulate this as a graph-

based pose SLAM problem and use the GTSAM [80] implementation of iSAM2 [81].

We use odometry factors f0 from the vehicle dead reckoning system between sequential

poses. Next, we add sequential scan matching (SSM) factors. fSSM are derived from

calling ICP [82] between sequential frames. Lastly, we consider non-sequential scan

matching factors (i.e., intra-robot loop closures). fNSSM factors are derived by calling

ICP between non-sequential frames, outlier factors are rejected using a minimum
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required point cloud overlap, then PCM [72].

f(Θ) = f0(Θ0)
∏
i

fOi (Θi)
∏
j

fSSMj (Θj)
∏
q

fNSSM
q (Θq)

Note that poses (keyframes) are instantiated if the dead reckoning system indicates

a distance or rotation larger than a threshold compared to the previous pose. When

each robot passes its state to the team members, it incrementally passes its optimized

poses as keyframes are instantiated.

7.2.4 Distributed Multi-robot SLAM

Now that each robot has a system to estimate its state, we extend it to include the rest

of the team’s states in a distributed multi-robot SLAM solution. We use the existing

pose graph to integrate inter-robot loop closures relating team members’ trajectories.

Note that each robot is responsible for its SLAM solution while passing the required

information to build a multi-robot state estimate that includes each robot.

Each robot will incrementally share its pose estimates via the datalink as

keyframes are added. We add any detected inter-robot factors, f IR, as in Section

V-F. Next, we will add the entire trajectory for each robot in the team if that robot

has at least one f IR. The trajectory will be added as a series of sequential factors

between robot poses, denoted fPR, partner robot factors. This completes the factor

graph as shown in Fig. 7.2.

7.2.5 Inter-robot Loop Closure Search

We formulate the search for inter-robot loop closure candidates as a retrieval prob-

lem. Given a candidate and a database, we wish to search the database for possible

matches. To do so, we build a scene descriptor using a range-based histogram similar
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Figure 7.2: SLAM Factor Graph. Robot poses x for three robots, α, β, δ are
considered with several factors: sequential scan matching factors (SSM) in green,
non-sequential scan matching factors (NSSM, intra-robot loop closures) shown in
red, inter-robot (IR) loop closures in blue and partner robot (PR) factors in purple.

to [94] for each scene. These histograms encode a scene according to the number of

measurements at each range bin, making it rotationally invariant. Note that range

bins are discrete, the size and range of which are provided a priori. Using the point

cloud, each histogram bin is the number of points in its respective range bin.

Each robot encodes and communicates its scene descriptors to the rest of the

team incrementally as the keyframes are instantiated. Note that when this message

is shared, it also includes the pose estimate of the keyframe in the sender robot’s

reference frame. Additionally, each robot maintains a k-d tree of its scene descriptors.

As a robot receives scene descriptors from team members, it compares them to its

own using a nearest neighbor search, with a designated maximum neighbor distance.

Once nearest neighbors are identified, registration is attempted.
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7.2.6 Registration

When performing registration between two scenes, we estimate a 3DOF rigid body

transformation

T =

(
x∆ y∆

)⊤

(7.6)

R =

cos θ∆ − sin θ∆

sin θ∆ cos θ∆

 , (7.7)

in order to derive inter-robot factors, f IR. In the registration problem we minimize

the squared Euclidean distance between two sets of points A and B, that have been

associated according to nearest neighbor.

E(R, T ) = Σ||ai −Rbi + T ||2. (7.8)

Note we do not have any notion of an initial guess between robot reference frames, and

therefore have no notion of initial guess when solving the registration problem. It is for

this reason we utilize Go-ICP [95]. Go-ICP finds a globally optimal registration result,

showing good performance under partial overlap and poor initial guess conditions. For

Go-ICP initial alignment, we apply Euclidean mean subtraction to the point clouds

and set R and T as identity and zero, respectively. Once Go-ICP completes, we call

standard ICP to refine the transformation using the Go-ICP result as an initial guess.
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7.2.7 Outlier Rejection

Once registration is complete, the result must be evaluated as legitimate or erroneous.

In our implementation, we consider outlier rejection before and after registration.

Before a registration call is made, we check that the point cloud has a minimum

number of points, to avoid attempting registration with a cloud containing insufficient

information to provide a reasonable transformation estimate. Next, we consider the

ratio between the point clouds; if the point ratio is too large or small, the scenes are

not likely to be of the same content and therefore discarded. Next, we cast sonar

points onto a coarse grid to enable rapid scene-to-scene comparison, which we term

the scene image. When comparing loop closure candidates, the two relevant scene

images are compared, and if the sum of absolute differences between them is high,

the scenes are considered different and do not warrant registration. Registration is

attempted if the point clouds have the minimum number of points, comply with

our ratio requirements, and have a small-enough sum of absolute differences between

scene images.

Once registration is completed, we evaluate the overlap between the two clouds

using the resultant transform estimate. Overlap is computed by evaluating the per-

centage of points with the nearest neighbor inside 0.5 meters. If the overlap is suf-

ficient, we pass the inter-robot loop closure to PCM [72] for geometric verification.

Once a loop closure is validated by PCM, it is added to the pose graph and commu-

nicated to the rest of the robots in the team.

7.2.8 Communication Strategy

We note that communication between robots is bandwidth limited. For this reason,

we formulate our communications strategy to minimize the transmission of large data
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structures by first exchanging small ones. After the robot has completed its pose graph

optimization at each step, it shares the newest scene histogram, with the associated

pose. When another member of the multi-robot system receives this message, the

histogram is used to query a k-d tree. If any of the nearest neighbors comply with

the maximum tree distance, then that point cloud is requested. Upon receipt of this

cloud, registration is attempted. This model aims to eliminate the exchange of raw

sensor data at each time step. Raw sensor data is only exchanged if scenes are close

in feature space, potentially resulting in an inter-robot loop closure.

Note that we incrementally share pose estimates of robot keyframes as keyframes

are instantiated. AUV state estimation, however, is prone to high SLAM drift and

subsequent drift correction when loop closures are detected. These corrections mean

that robots may need to share updated pose estimates with their team; otherwise,

they will be operating with deprecated knowledge of other robots in the system. We

handle this by setting a change threshold for a robot’s state; if any pose changes sig-

nificantly, that pose is re-sent to the team. The team then uses this new information

to implement the fPR.

Entire Trajectory Poses With Inter-robot Loop Closures

Euc. Dist. (m) Theta (deg.) Euclidean Dist. (m) Theta (deg.) Network Use (bits/second)
Case MAE RMSE MAE RMSE MAE RMSE MAE RMSE Average Min/Max

SM 1 2.83 2.89 5.12 5.12 2.2 2.2 5.12 5.12 - -
SM 2 2.36 2.39 3.47 3.47 2.06 2.06 3.47 3.47 - -
SM 3 1.92 1.98 3.5 3.51 1.5 1.97 3.27 3.28 337.62 217.05 / 468.05
SM 4 2.63 2.68 4.74 4.74 2.03 2.04 4.75 4.75 161.07 134.93 / 208.55
SM 5 7.25 7.58 20.27 26.76 6.84 6.88 14.47 15.83 213.65 124.26 / 486.54

USMMA 1 2.28 2.66 3.24 3.89 1.22 1.44 1.78 2.38 - -
USMMA 2 2.09 2.41 2.21 2.63 1.13 1.39 1.38 1.78 - -
USMMA 3 1.17 1.29 1.93 2.27 0.66 0.73 1.27 1.47 3176.61 2556.64 / 5579.54
USMMA 4 1.44 1.62 2.62 3.07 0.82 0.97 1.71 2.09 1244.84 1050.19 / 1284.24
USMMA 5 3.09 3.59 17.76 22.66 3.26 3.31 11.51 13.33 2126.56 2079.58 / 2173.16

Table 7.1: Real world multi-robot SLAM results. This table summarizes inter-
robot error and network utilization for our five test cases. We analyze inter-robot
error in two ways; the entire robot trajectory and only poses with inter-robot loop
closures. We report the average network utilization and the min/max of the 10 trials
for each test case. Note SM denotes SUNY Maritime.
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7.3 Experiments

7.3.1 Hardware Overview

In this work, we utilize our customized BlueROV2-Heavy. This vehicle features depth

and attitude control implemented with an onboard PixHawk. The sensor payload

includes a Rowe SeaPilot DVL, VectorNav VN-100 MEMS IMU, Bar30 pressure sen-

sor, and a twin sonar arrangement. The vertical sonar is a Blueprint Subsea Oculus

M1200d, and the horizontal sonar is an Oculus M750d. We use the horizontal sonar

as the SLAM perceptual input; with a max range of 30 meters, the sensor has a 20-

degree vertical aperture and a 130-degree horizontal field of view. In order to manage

sensor data and our SLAM system, we utilize the robot operating system (ROS).

The computer used to manage all instances of SLAM in our multi-robot system is

equipped with an Intel i9-9880H 2.30GHz CPU.

In order to perform multi-robot experiments, we record several datasets and

concurrently play them back on a single computer. We use |N | instances of our system

during playback to create a multi-robot system. Please note that we play back real

data (sonar, DVL, IMU) and simulate acoustic communication between robots. To

simulate communications between robots, we use the existing ROS message passing

system to pass the relevant messages between instances of our system.

7.3.2 Metrics

In order to consider different parameterizations of our system, we use several metrics.

Note that there is no ground truth in our data, nor is there enough publicly available

sonar data with ground truth information to perform a study of this type. However,

since the goal of our system is to provide awareness of the team relative to a single

robot, we formulate the following. Each dataset has a stable single robot SLAM



85

solution; this solution is transformed into the frame of each team member. The

location of each team member in a common reference frame is determined using

manual alignment. We then compare the single-agent SLAM outcome, transformed

into each team member’s reference frame, to the estimate each robot has built of its

team members using our system. We denote this as inter-robot error, characterized

with mean absolute error (MAE) and root mean squared error (RMSE).

Our second metric is network utilization, measured by monitoring the commu-

nication channel between robots and measuring total traffic. Note that we exclude

network overhead and only report the cost of message contents, as network overhead

may be hardware-specific. Network utilization is reported as a time series plot and

considering the total usage divided by the mission duration. Note that we perform

ten trials for each test case, and results for inter-robot error and network utilization

are aggregated across all ten trials.

7.3.3 Multi-robot SLAM Ablation Study

To validate our system, we consider two environments: SUNY Maritime College in

The Bronx, New York, and the United States Merchant Marine Academy (USMMA)

in Kings Point, New York. At SUNY Maritime, we use a system of two robots

crossing paths from opposite sides of the environment, with a single opportunity for

inter-robot loop closure. At USMMA, we consider a system of three robots traveling

in similar directions, with several opportunities for inter-robot loop closure. At SUNY

Maritime, the robots start on opposite sides of the environment, while at USMMA

all robots start close together.

To test the algorithmic components of our multi-robot SLAM architecture, we

present an ablation study in which we progressively add components of our system

until the system is complete. Specifically, we vary the contents of our outlier rejection
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system and specific components of the communication strategy. We note that there

is no difference in system parameterization between datasets. For each dataset, we

test each of the following cases:

• Case 1: min. no. pts., point ratio, and overlap conditions

• Case 2: min. no. pts., point ratio, overlap, and scene image conditions

• Case 3: min. no. pts., point ratio, overlap, scene image conditions, and PCM

• Case 4: min. no. pts., point ratio, overlap, scene image conditions, PCM, and

point cloud compression (The complete proposed system)

• Case 5: min. no. pts., point ratio, overlap, scene image conditions and PCM

without re-sending updated pose information

Our results are summarized in Table 7.1, and qualitative examples are shown in Fig.

7.3. We require a minimum number of 75 points, a maximum point ratio of 2.0, a

scene image max. of 0.8, minimum overlap of 55% and compression voxel size of 0.25

meters. When computing SLAM metrics, we consider Euclidean distance in meters

and yaw (theta) in units of degrees. We break our SLAM metrics into two categories:

(1) the entire trajectory and (2) only the poses with inter-robot loop closures. We

also report network utilization in units of bits/second for each case. Note that cases 1

and 2 do not have network utilization reported. Their communication configuration

does not differ from case 3, nor does their difference in outlier rejection change any

form of communication logic.

When considering the results of our multi-robot SLAM ablation study, there

are several important takeaways. Firstly there is added value in using a scene im-

age as a method of outlier rejection (case 2) at both USMMA and SUNY Maritime

in terms of error. Secondly, the addition of PCM (case 3) yields additional value in
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terms of inter-robot error. Next, when considering the use of point cloud compression

(case 4), there is a slight increase in inter-robot SLAM error in exchange for cutting

network utilization in half compared to uncompressed clouds (case 3). Time series

plots showing network utilization are given in Fig. 7.4. We note the reduction in net-

work usage when using the compression method, as well as the spike at the beginning

of the USMMA mission, which is due to heavy point cloud exchange. Lastly, when

removing the sending of significant updates in a robot’s state estimate to the rest of

the team (case 5), a greatly deteriorated inter-robot SLAM result is observed with

some savings in network utilization relative to case 3.

We note that our system runs faster than keyframes are added; an aggregate

summary of runtimes from USMMA and SUNY Maritime is shown in Table 7.2.

We note that our registration time in Table 7.2 includes our outlier rejection sys-

tem (without PCM, which is captured separately in the table). It is important to

note that network utilization with three agents is reasonable when considering the

limitations of commercial off-the-shelf hardware options. We want to underscore the

significance of this result. This work is the first instance of multi-robot SLAM using

real imaging sonar data to utilize indirect encounters, to the best of our knowledge.

Not only does our system result in inter-robot loop closures, but these loop closures

are also leveraged to build estimates of team members in the frame of each robot in

a distributed manner. Further, it does so with an efficient exchange of information,

as shown by the network utilization results. Lastly we note the success rate, i.e., how

often inter-robot loop closures are successfully detected. For cases 1-4 in both data

sets and USMMA case 5 we note a 100% success rate. For SUNY Maritime case 5,

we note a 70% success rate, but given this is a data point meant to show the value of

an otherwise included feature, we consider it no further.
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Algorithm Mean (ms) Standard Deviation (ms)

PCM 0.32 0.33
Kd-tree Search 0.88 4.49

Registration (w/ rejection) 258.88 265.43

Table 7.2: Runtime. PCM is used for loop closure verification, k-d tree search is for
scene comparison, and registration refers to the Go-ICP based registration method
in Section IV-F, including the outlier rejection computations.

Method Mean Count Std. Dev. Mean KBits

Scene Descriptor 1 1 .128
Point cloud - float32 138.69 142.94 9.14

Point cloud - compressed 138.69 142.94 2.28
KAZE 48.68 56.73 116.20
AKAZE 37.05 41.14 20.07
ORB 168.62 322.43 82.54

Table 7.3: Perception message overhead. Mean count and std. dev. refer to the
average number of points extracted with the given method. Mean Kbits are computed
by taking the overhead of a single point and multiplying it by the mean number of
points.

7.3.4 Analysis of Perception Message Overhead

Some readers may note that using a computer vision paradigm is common when

attempting to register a pair of keyframes with no initial guess. This general paradigm

extracts salient point features, associates them, and then computes a transform with

RANSAC or similar. We note the use of KAZE [19] and AKAZE [20] features on

sonar imagery [21, 15] and the use of ORB [18] in RADAR imagery. However, in

the multi-robot case, that would require broadcasting feature points and descriptors.

We provide a summary of some relevant feature extraction tools for sonar imagery

in Table 7.3. Here we consider the data-overhead per feature and the number of

features per sonar image in our datasets. We use the OpenCV implementations of

KAZE, AKAZE, and ORB to perform this comparison.
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As shown in Table 7.3, our scene descriptor is a data-efficient means of sum-

marizing content. Moreover, even passing simple 32-bit floating-point-based point

clouds is significantly less costly than KAZE, AKAZE, and ORB. Lastly, our com-

pression method, while simple, shows a considerable reduction in data requirements,

and as we have shown in Section V-C and Table 7.1, only results in a minor increase

in inter-robot error.

7.3.5 Multi-agent Mapping

While the purpose of our system is to provide each robot with knowledge of the states

of the other agents in the system, it can also be used to derive merged maps. Consider

a system of robots tasked with mapping an area in a collaborative modality, a core

task for a multi-robot system. This section showcases an example of a map that

was merged offline, using the multi-robot SLAM results. We specifically consider the

SUNY Maritime dataset, which has two robots. Using the multi-robot state estimate,

we can transform the sonar point clouds in the frame of each robot, shown in Fig.

7.5. We note the coverage increase with the use of a multi-robot system and the drift

in our SLAM system. This drift is primarily due to the high drift rate of our low-cost

MEMS IMU. We also note that the inter-robot drift is comparable to that of a single

robot sweeping the entire workspace shown in Fig. 7.5.

7.4 Conclusions

In this work, we have proposed a system to find and integrate inter-robot loop closures

in a distributed, graph-based pose SLAM architecture. We have demonstrated the

real-time viability of our system, the accuracy of accepted inter-robot constraints, and

the efficacy of our communications system. When considering the potential shortcom-
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ings of our system, while we take steps to prevent perceptual aliasing from corrupting

the SLAM solution, this effect can overwork the communications link. If scene de-

scriptors are similar, we exchange point clouds, meaning that perceptual aliasing can

result in the over-exchange of information that our outlier rejection system will cull.

Future work will consider geometric verification in scene descriptors to ensure only

useful perceptual data is exchanged. However, this is the first example of imaging

sonar-based underwater multi-robot SLAM, to the best of our knowledge. There is

much potential for future work, including achieving a wide variety of cooperative

tasks, and multi-robot active SLAM. Furthermore, our system enables multi-agent

autonomous operations in settings where GPS is unavailable or clock synchronization

is impractical, which are relevant constraints in many real-world applications.
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(a) (b)

(c)

Figure 7.3: Example trajectories from USMMA. This dataset includes three
robots, (a) shows robot α (red), (b) shows robot β (blue) and (c) shows robot δ
(orange). Solid lines show trajectory estimates with dotted lines showing ground
truth used to compute Table 7.1. Note that there is only robot relative ground truth,
so there is no true (dotted) line for a robot’s own trajectory. We also note that
estimated trajectories (solid) may be shorter than true (dotted) due to the varying
shutdown times of robots. Stars show starting locations for robots. We avoid using
γ since it refers to sonar intensity.
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Figure 7.4: Network utilization. A comparison of network utilization with and
without the voxel compression method described in Section IV-B. The y-axis shows
network utilization using a sliding window (window of 100) average. The x-axis shows
time. A representative run is shown from the three-robot USMMA datset at top, and
from the two-robot SUNY Maritime dataset at bottom.
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Figure 7.5: SUNY Maritime results. An example multi-robot SLAM run from
SUNY Maritime, from the perspective of one robot. This robot’s poses are shown as
black dots connected by several factors: sequential scan matching factors (SSM) in
green, non-sequential scan matching factors (NSSM, intra-robot loop closures) shown
in red, inter-robot (IR) loop closures in blue and partner robot (PR) factors in purple.
This robot’s map is shown in red with blue points merged from the other robot in
the mission.
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Chapter 8

Conclusions and Future Work

Thus far our work has consisted of situational awareness for low-cost underwater

vehicles, single agent and homogeneous robot teams. We have presented methods

for recovering 3D data from sonar, large-scale 3D mapping, using prior information

to improve SLAM, and a multi-robot SLAM system. These methods allow low-cost

vehicles to operate in complex environments, and even recover 3D data.

Our future work will consider this functionality for multi-agent, inter-domain

marine robotics systems. We will consider multi-agent navigation problems, specifi-

cally focusing on using groups of robots for ISR, survey, and security missions. We

will consider on heterogeneous systems in marine environments, where differently

equipped robots can assist each other during a mission.

In our future work, we will focus on extending the robot state estimation

problem to multiple robots, even those with heterogeneous sensor payloads. Moreover,

we will consider the mapping problem, both 2D and 3D for multiple agents in marine

environments. Using DRACo-SLAM, we can consider multi-agent decision-making

coupled with the SLAM problem, known as active-SLAM. In this area, we can consider

robots cooperatively performing a mission, minimizing a variety of metrics such as

time, travel distance, and energy expenditure.
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