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Introduction

We introduce the Stochastic Road Network Environment:

a simulated domain aimed at modeling stochasticity that

influences route-level decision making. Traffic and roadway

interactions can be modeled with a simple stochastic reward

representative of the travel time across segments of the

network. The proposed environment maintains a necessary

amount of physical realism by streaming high-dimensional

LIDAR scans of complex urban surroundings. Experiments

show that robust navigation policies can be learned with

modest amounts of data, further suggesting the proposed

domain could be a useful platform for autonomous driving

research with reinforcement learning. All code needed to use

the environment is available in an open source repository at:

https://github.com/RobustFieldAutonomyLab/Stochastic_Road_Network

Robust Reinforcement Learning

This work distinguishes between two kinds of target policies.

The target learning policy is the policy used in the update rule,

and its outcomes are reflected in the learned return distribu-

tion, e.g. the standard greedy policy. In embodied learning set-

tings, there can be an additional policy that is used after the

learning process stops or is temporarily paused. We call this

the target deployment policy ψ ∈ Π; it is defined as a function

of the target learning policy ψ ≜ f(π), which we denote with

the shorthand ψ(π) in Fig. 1. The deployment policy can be

the same as the learning policy—inwhich case, the robotwould

learn for some period of time, stop executing its behavior pol-

icy, then start executing its target learning policy. However, in

settings where robustness is desired, it can be beneficial for the

deployment policy to selectively choose which outcomes from

the learning policy it would like to realize.
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Figure 1: Robust Learning Procedure: Data gathered with a be-

havior policy β is used to update a target learning policy π. At some

point learning will stop, then the system will be deployed with the

target deployment policy ψ.

second-order stochastic dominance

The second-order stochastic dominance (SSD) relation is de-

fined using distribution functions and compared over the set

of their realizable values. Consider two returns, G and G′
, re-

spectively induced by actions a and a′. We say thatG stochas-

tically dominatesG′
in the second order when their integrated

CDFs, F (2)(z) ≜
∫ z

−∞ F (x)dx, satisfy the following equation,
and we denote the relation G ⪰(2) G

′
:

G ⪰(2) G
′ ⇐⇒ F

(2)
G (z) ≤ F

(2)
G′ (z), ∀ z ∈ R.

The SSD policy prefers outcome G to G′
when G ⪰(2) G

′
. In

settings where multiple outcomes do not result in an exact tie

between expected values, the SSD policy will be equivalent to

the standard greedy policy. Here we also introduce a relax-

ation to the SSD policy that permits uncertainty to be consid-

ered even when there is not an exact tie. The thresholded SSD

policy computes the difference in the expected return values of

the top two optimal actions. When the difference is less than

a certain threshold they will be considered equivalent, and the

tie will be broken with a comparison of their second moments

which is consistent with the exact SSD policy—namely, the ac-

tion that induces the smaller secondmomentwill be preferred.

The Stochastic Road Network Environment

The Stochastic Road Network Environment is built upon map structure and simulated sensor

data originating from the CARLA autonomous vehicle simulator version0.9.6, Five suchmaps

are available by default, named in the sequencing of Town01 to Town05. These maps vary

in size, with multiple kilometers of roadway defined in each. The maps also vary with respect

to the road features present, including complex intersections, multi-lane roadways (allowing for

lane changes), and roundabouts. A breakdown of map action spaces, state count, and features

is provided in Table 1.

Map No. Actions No. States Features

Town01 2 319 Basic

Town02 2 156 Basic

Town03 4 665 Lane changes

Town04 4 1679 Lane changes, Roundabouts

Town05 3 1220 Lane changes, Roundabouts

Table 1: Environment map state and action spaces. The action space at each state is a discrete map of

candidate state transitions. At states for which the graph topology does not allow for use of the full action

space (i.e., in the case of a straightaway, where there is only one valid direction of travel) the remainder

of the action space corresponds to a loopback action, whereby the agent re-transitions into its current

state. State transitions are fully deterministic, meaning every state-action pair yields a transition to a

deterministic subsequent state.

Figure 2: Observation sample from proposed environment. The learning system observations are

composed of a 2D binary occupancy grid at ground level, with cell state corresponding to the presence of

a LIDAR return within a specific block of space.

Experimental Results

(a) Executed paths in Town 1. The path taken

during the final evaluation is shown for each de-

ployment policy. Greedy and SSD methods take

the noisy shortest path in all trials. Thresholded

SSD takes the second-shortest path to avoid un-

wanted stochasticity in nearly all trials, which is

visualized here. The crosswalk state serves as a

source of random travel delay, with stochastic re-

wards reflective of the delays induced by pedes-

trians crossing the roadway.

(b) Learning curves of QR-DQN with different target deploy-

ment policies. We report the mean and standard deviation re-

sulting from 30 trials. As indicated by the returns, both the

greedy and exact SSD policies take a path with high stochas-

ticity in all trials. The thresholded-SSD policy sacrifices opti-

mality for robustness, and during the final evaluation, the sec-

ond shortest path (Robust Path in the plot) is taken in 22 trials,

the third shortest path is taken in seven trials, and the short-

est path (Noisy Path in the plot) is taken in one trial. Both the

second shortest path and the third shortest path are noiseless,

and their lengths differ by only one step.

Figure 3: Learning Experiments comparing the performance of different target deployment polices (greedy

policy, exact SSD policy, and thresholded SSD policy), measured with the approximate discounted return

(γ = 0.99). Performance measurements are taken during an independent evaluation, at one-hundred

equidistant time-steps over a total of one-million steps of learning. This is intended to model the counter-

factual scenario of what could happen if learning were paused and the deployment policy was executed.


