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Abstract— Safe maritime navigation is a challenging problem
for vehicles subjected to wind and wave disturbances in
congested environments. We have developed a benchmarking
simulation framework for evaluating autonomous navigation
systems under different levels of congestion, wind and waves.
We have also developed a training framework for creating
Deep Reinforcement Learning (DRL) based navigation policies
that can learn to operate robustly under environmental dis-
turbances. A total of eight classical and DRL-based navigation
systems have been implemented for use with both frameworks.

I. INTRODUCTION

Navigation safety in high-traffic maritime environments is
of paramount importance. According to [1], 25% of vessel
losses reported around the world happened in the maritime
region around South China, Indochina, Indonesia, and the
Philippines from 2014 to 2023, which is related to the
huge volume of imports and exports flowing through the
region and the resulting high levels of shipping traffic. In
addition, the South China Sea is an area of significant
typhoon activities, where approximately 9.2 tropical cyclones
occurred annually during 1981–2015 [2], and the resulting
strong waves and winds may significantly affect vehicle
stability and threaten navigation safety.

In recent years, an increasing number of Unmanned
Surface Vehicles (USVs) have been deployed in maritime
missions to reduce human errors in operation and enhance
navigation safety. As we consider scenarios where strong
environmental disturbances can significantly impact vehicle
motion, there may be high uncertainty in a vehicle’s inter-
pretation of its perceived surroundings, and in the outcomes
of its control commands. Additionally, the Convention on the
International Regulations for Preventing Collisions at Sea
(COLREGs) [3] can be vague in addressing multi-vehicle
encountering situations, hence there can be uncertainty in
inferring the intent of other vehicles in congested scenarios.

In this paper, we develop a benchmarking framework
which can be used to evaluate the performance of USV
navigation systems in scenarios with different traffic vol-
umes, wind and wave strengths, and we also implement
navigation systems based on state-of-the-art methods. The
benchmarking framework is based on the Virtual RobotX
(VRX) simulator [4], which can simulate realistic sensor
measurements, along with the dynamics of USV interactions
with wind and waves.
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Fig. 1: Our benchmarking framework’s USV navigation system.

Fig. 2: Our benchmarking framework’s experiment manager.

In addition, as Deep Reinforcement Learning (DRL) ap-
proaches have shown advantages in fostering robust robot
navigation policies in recent years [5], we also develop
another framework for training decision-making and control
policies that learn to be robust to environmental disturbances
with state-of-the-art DRL algorithms. The trained policies
can be used for autonomous navigation without the need for
further training.

Our benchmarking and training frameworks, as well as
implementations of a total of eight classical and DRL based
navigation systems, are freely available1. The user can also
develop and integrate new sensor modalities and decision-
making solutions into the existing frameworks conveniently.

II. BENCHMARKING FRAMEWORK - NAVIGATION
SYSTEM

The structure of the navigation system is shown in
Figure 1. We developed new ROS 2 packages to re-
alize the framework, including three new node types,
lidar processor, state processor and action
planner, and two new message types, cluster msg and
state msg. The lidar processor subscribes to the

1https://github.com/RobustFieldAutonomyLab/
Distributional_RL_Decision_and_Control



Fig. 3: Training manager. πβ is the behavior policy, for which we use ϵ − greedy to balance exploration and exploitation, and πψ is
the greedy execution policy.

raw LiDAR point cloud topic, and performs point cloud seg-
mentation with the method proposed in [6]. It returns point
clouds with segmented cluster labels, and a cluster msg
that summarizes the estimated centroid and radius of every
cluster. The state processor receives cluster msg
and odometry information, including ego pose and velocity
measurements, and estimates the cluster velocities using
current and previous measurements. Based on the received
state msg, the action planner generates thrust com-
mands to control vehicle motions. We implemented Artificial
Potential Field (APF)-based [7], Model Predictive Control
(MPC)-based [8] and DRL-based planners. The DRL-based
planners are introduced in Section IV.

III. BENCHMARKING FRAMEWORK - EXPERIMENT
MANAGER

The workflow of the experiment manager is shown in
Figure 2. The environment launcher spawns buoys
and vehicles in accordance with specified environment set-
tings for a given episode of the simulation. Each vehicle
exchanges information with an individual navigation system
introduced in Section II. To ensure that all vehicles start at
the same time, action planner in the navigation system
will not generate thrust commands until receiving unpause
signal, which will be sent to all vehicles simultaneously
after the environment launch is completed. During the ex-
periment, each vehicle sends robot info msg, including
its pose, velocity and travel time data to trajectory
recorder, which ends the episode if the goal is reached
or the travel time exceeds the maximum time limit, and also
to collision detector, which ends the episode after
a collision happens.

IV. TRAINING MANAGER

Training DRL-based decision-making policies requires
extensive interactions between the learning agent and the
environment, which is computationally expensive in the VRX
simulator, which simulates realistic sensor measurements
and complex interactions among USVs and waves. Thus,
we perform training in a simplified 2D environment, and

the training framework is shown in Figure 3. The pol-
icy model being trained matches the input and output of
action planner in the navigation system in Figure 1,
which receives observations that include position, radius and
velocities of detected surrounding objects, and generates
thrusts as control commands. The effects of wave and
wind disturbances on robot motion and perception are not
simulated in this training environment. Instead, we use a
technique similar to [9], which models disturbance effects as
random perception errors from Gaussian distributions, under
which the policy model can gradually learn to be robust to
corrupted observations. Every interaction between the agent
and the training environment is stored in the replay buffer
as a tuple of observation, action and reward. Periodically,
a batch of experience tuples are sampled from the replay
buffer and used to update parameters of the policy model
with the corresponding DRL algorithm. We implemented
DRL training algorithms and policy models based on Actor-
Critic Implicit Quantile Networks (AC-IQN) [10], standard
IQN [11], Soft Actor-Critic (SAC) [12], Deep Deterministic
Policy Gradient (DDPG) [13], Rainbow [14] and Deep Q-
Networks (DQN) [15]. To evaluate the training performance,
after a specified number of iterations of training, the policy
model is used to interact with an evaluation environment,
and the resulting data is stored and can be visualized to
understand policy behaviors. In Figure 3, all vehicles in the
upper episode reach their respective goals without colliding
with any other vehicles or obstacles, and the episode is
successful. The lower episode is ended and deemed failed
after a collision happens. After the training process finishes,
the parameters of the trained PyTorch model are saved in
a C++ executable model with TorchScript, which is loaded
into the corresponding DRL-based action planner for
thrusts inferences.
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