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TOWARDS 3D MAPPING AND AUTONOMOUS EXPLORATION FOR

UNDERWATER ROBOTS IN CLUTTERED ENVIRONMENTS

ABSTRACT

Over the last two decades, the application of autonomous underwater vehi-

cles has proliferated across challenging perceptual tasks such as pipeline and ship

hull inspection, bathymetric survey and structure mapping. Although a camera can

capture fine details of the underwater environment, its capability is often limited by

the turbidity of the water. However, a viable alternative, sonar, is plagued by low

signal-to-noise ratio, low resolution and the lack of elevation information in a sonar

measurement. Therefore, accurate, reliable state estimation and mapping, and specif-

ically, simultaneous localization and mapping (SLAM), are essential prerequisites for

achieving such autonomy. Meanwhile, the capability of autonomous exploration with-

out human intervention is potentially impactful for underwater robots in scenarios

where teleoperation is limited or infeasible due to constrained communication in clut-

tered, previously unmapped subsea environments.

In this work, we accomplish the objective of autonomous exploration by solving

three major problems faced by underwater robots navigating in cluttered marine envi-

ronments: mapping, SLAM and exploration. First, building representative 3D maps

of surrounding environments is fundamental for applications such as safe navigation

and environmental inspection. We propose an efficient Gaussian process occupancy

mapping algorithm that is capable of producing rich yet accurate maps utilizing

sparse measurements from a mechanical scanning sonar. We further incorporate a

Gaussian process random field into a factor graph, yielding a 3D terrain map from

imaging sonar in the absence of elevation angles. Secondly, a robust data association
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technique based on joint compatibility branch and bound is proposed to address the

ambiguity during landmark matching in feature-sparse subsea environments. Work

on the development of SLAM for our inspection-class underwater robot is described.

Thirdly, we present a novel expectation-maximization (EM) exploration algorithm,

taking into account the robot’s mapping rate, map uncertainty, and state estimation

uncertainty. We validate our proposed algorithm on a proxy ground vehicle equipped

with a short-range LiDAR, leveraging segment-aided pose SLAM adapted for better

active localization. Lastly, the real-time applicability of the framework is also demon-

strated in a previously unmapped underwater environment, which is supported by a

robust SLAM framework using 2D imaging sonar.
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Chapter 1

Introduction

In recent years, robots, such as manipulators, legged robots and quadrotors, are under

active development to bring autonomy into industry or even our daily life. Their de-

velopment has been advanced dramatically with the help of computer vision, machine

learning and reinforcement learning. In December 2018, Waymo was announced as the

first company to commercialize a fully autonomous taxi service in the U.S. However,

underwater robots haven’t achieved the same levels of autonomy as ground vehicles.

More than 80% of the oceans, which cover 71% of the area of the Earth, haven’t been

explored and mapped as throughly as Earth’s surfaces. Therefore, oceans remain as

a frontier for robotics research. Underwater robots that are equipped with similar

autonomy as ground vehicles will lead to more discovery of valuable resources and

energy in the depths of the ocean. Also, constructing accurate, descriptive maps of

underwater structures and terrain is of great interest for security and environmental

monitoring, and for port and harbor infrastructure inspection, where regular obser-

vation by divers is currently required.

The challenges we are faced with in underwater robots are rooted in the limited

sensing capability as well as high and unpredictable disturbances. Electromagnetic

signals are heavily damped underwater, thus not propagating far. Thus, it rules out

the applicability of a variety of sensors relying on electromagnetic waves including

camera, GPS, laser range-finder, etc. Acoustic waves are the canonical alternative

in positioning and perception systems. For instance, with a Doppler Velocity Log

(DVL), we are able to measure the relative velocity with respect to the sea bottom

by measuring the Doppler shift of the sound wave; with an imaging sonar, we know
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whether obstacles exist in the sensor’s field of view by measuring the intensity of the

reflected sound wave. However, the resolution of acoustic sensors is severely limited

by the wavelength of sound, which is typically larger by 2 to 3 orders of magnitude

than that of light. What’s more, underwater sound propagation is affected by a

number of factors: loss from the spherical spread of sound waves, attenuation due

to absorption, refraction and scattering. Apart from the noise and low resolution of

sensors, disturbances from the water also pose a great challenge for accurate state

estimation and stable attitude control, especially for applications in environments

with high currents. The development of underwater robotics is also restricted by the

computation resource an embedded computer can provide. Though we can transfer

computation to a top-side computer, the bandwidth of transmission is limited.

Many underwater robot platforms have performed mapping tasks, or achieved

full autonomy in complex outdoor environments. For an autonomous underwater ve-

hicle (AUV) equipped with a DVL and a single-beam scanning sonar, a navigation

system has been developed to produce 2D maps of man-made, structured environ-

ments [7], [8], [3]. Inspection of ship hulls and marine structures was studied and

approached by simultaneous localization and mapping, navigation and planning al-

gorithms [4], [9], [10]. An approach to endow an AUV with the capabilities to move

through unexplored environments was presented with specific focus on planning of

feasible and safe paths in underwater environments, [11], [12], [6], [13], [5]. The real

experiments mentioned above are depicted in Fig. 1.1. The novelty of this work is

increasing underwater mapping capability (from sparse to dense maps and from 2D to

3D maps) and taking into account uncertainty in exploring an unknown environment.
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(a) Raw sonar data of an abandoned marina in
polar frames [3]

(b) The resulting map and trajectory
from SLAM together with satellite
image [3]

(c) Depiction of the sensor field of view
for the imaging sonar and monocular
camera during open-area, hull-locked in-
spection [4]

(d) SLAM navigation results on the SS Curtiss [4]

(e) Survey areas consisting of a series
of concrete blocks [5]

(f) Real survey trajectory using cameras on
AUVs [6]

Figure 1.1: Examples of underwater mapping and navigation experiments.
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1.1 Problem Statement

Our objective is to achieve full autonomy on underwater vehicles, which are equipped

with perception and navigation sensors, in complex and unknown subsea environ-

ments. To successfully reach the objective, simultaneous localization and mapping

(SLAM) is a key component that must be adapted for noisy, featureless underwater

environments. As a result of sparse measurements from acoustic sensors, descriptive

and rich maps are of great value for both inspection and navigation. Finally, the

robot should be able to explore unknown environments without human intervention,

while estimating its localization and inferring the surroundings using SLAM. More

importantly, the exploration should take into account uncertainty associated with

localization and mapping, because underwater vehicles are prone to drift.

1.2 Overview and Contributions

The dissertation is structured as follows. An autonomous system integrates state

estimation, mapping and navigation. In Chapter 2, we present an introduction of

essential components in autonomous robots: SLAM, occupancy mapping and explo-

ration algorithms. We provide a review of current methodologies.

In Chapter 3, we discuss the mapping problem using sonar in underwater en-

vironments. Specifically, we tackle two problems in the sonar measurements, sparsity

which we encounter using a single-beam sonar and loss of elevation angles which we

encounter using a 2D imaging sonar. In Chapter 3.3, we present a novel algorithm to

produce descriptive online 3D occupancy maps using Gaussian processes (GPs). GP

regression and classification have met with recent success in their application to robot

mapping, as GPs are capable of expressing rich correlation among map cells and sen-

sor data. However, the cubic computational complexity has limited its application to
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large-scale mapping and online use. We address this issue first by proposing test-data

octrees within blocks of the map that prune away nodes of the same state, condens-

ing the number of test data used in a regression, in addition to allowing fast data

retrieval. We also propose a nested Bayesian committee machine which, after new

sensor data is partitioned among several GP regressions, fuses the result and updates

the map with greatly reduced complexity. Finally, by adjusting the range of influence

of the training data and tuning a variance threshold implemented in our method’s

binary classification step, we are able to control the richness of inference achieved by

GPs and its tradeoff with classification accuracy. In Chapter 3.4, we propose a novel

approach for underwater simultaneous localization and mapping using a multibeam

imaging sonar for 3D terrain mapping tasks. The high levels of noise and the absence

of elevation angle information in sonar images present major challenges for data asso-

ciation and accurate 3D mapping. Instead of repeatedly projecting extracted features

into Euclidean space, we apply optical flow within bearing-range images for tracking

extracted features. To deal with degenerate cases, such as when tracking is inter-

rupted by noise, we model the subsea terrain as a Gaussian Process random field on

a Chow—Liu tree. Terrain factors are incorporated into the factor graph, aimed at

smoothing the terrain elevation estimate.

In Chapter 4, two related works on SLAM are presented. In Chapter 4.1, we

first present a novel approach to perform underwater simultaneous localization and

mapping (SLAM) using a small inspection-class remotely operated vehicle (ROV)

equipped with a single-beam scanning sonar, amidst high levels of noise present in

the sonar data, and in the absence of inertial/odometry measurements. Features are

extracted from hierarchically grouped clusters of sonar returns, data association is

performed via the iterative joint compatibility test, and the vehicle’s trajectory and

map are estimated using incremental smoothing and mapping (iSAM). The resulting
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point clouds derived from the ROV’s sonar are used to produce Gaussian process oc-

cupancy maps, which interpolate among gaps in the acoustic range data to produce

descriptive 3D maps of submerged structures. In Chapter 4.2, we study the am-

biguous data association problem confronting SLAM, specifically for the autonomous

exploration of environments lacking rich features. In such environments, a single false

positive assignment might lead to catastrophic failure, which even robust back-ends

may be unable to resolve. Inspired by multiple hypothesis tracking, we present a novel

approach to effectively manage multiple hypotheses (MH) of data association inher-

ited from traditional joint compatibility branch and bound (JCBB), which entails the

generation, ordering and elimination of hypotheses.

Before introducing autonomous exploration on underwater vehicles, we first

present the derivation and implementation in Chapter 5 on our ground vehicle as a

proof of concept. We consider the problem of autonomous mobile robot exploration in

an unknown environment for the purpose of building an accurate map efficiently. Most

literature on this subject is focused on the combination of a variety of utility functions,

such as curbing robot pose uncertainty and the entropy of occupancy grid maps.

However, the effect of uncertain poses is typically not well incorporated to penalize

poor localization, which ultimately leads to an inaccurate map. Instead, we explicitly

model unknown landmarks as latent variables, and predict their expected uncertainty,

incorporating this into a utility function that is used together with sampling-based

motion planning to produce informative and low-uncertainty motion primitives. We

propose an iterative expectation-maximization algorithm to perform the planning

process driving a robot’s step-by-step exploration of an unknown environment.

In Chapter 6, we conclude the dissertation by presenting the exploration frame-

work in underwater environments. A robust SLAM solution is proposed to provide

fundamental functions that an exploration algorithm needs. We employ a keyframe-
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based approach to performing SLAM optimization and at each keyframe feature

points are extracted and matched using improved ICP to provide constraints be-

tween poses. A local occupancy grid map is built in the local keyframe and the global

map is computed and updated via an efficient submap method. Using the estimated

trajectory and occupancy map, we demonstrate our proposed exploration algorithm

in Chapter 5 in real and simulated underwater environments using 2D imaging sonar.

We provide conclusions and future works in Chapter 7.

In summary, the main contributions of this dissertation are as follows:

• Novel algorithms for computationally efficient 3D Gaussian process occupancy

mapping [14] and accurate imaging sonar-based terrain mapping [15].

• An approach for landmark-based SLAM with a single-beam scanning sonar

[16] and a related solution for multi-hypothesis joint compatibility branch-and-

bound data association [17].

• A novel framework for autonomous exploration that uses virtual landmarks

to enforce accurate map-building under localization uncertainty [18], and its

application using pose SLAM aboard an unmanned ground vehicle [19].

• A scan-matching based SLAM framework that allows the adaptation of the

above framework to the autonomous exploration of underwater environments,

permitting one of the first demonstrations of underwater active SLAM in an

unstructured, outdoor environment.
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Chapter 2

Background

2.1 Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) describes the problem of localizing

a robot while simultaneously mapping the environment, provided a variety of sensor

measurements, e.g. odometry measurement from an odometer, linear accelerations

and angular velocities from an inertial measurement unit (IMU), and range to objects

from laser range-finders. For either an unmanned ground vehicle (UGV) or a remotely

operated underwater vehicle (ROV), we denote the state of the robot at the i-th

time step by xi, with i ∈ {0, ..., N}. We are interested in recovering 6-D pose,

position and orientation, of the robot, thus xi , [Ri,pi] ∈ SE(3), where the rotation

matrix Ri belongs to 3D Special orthogonal Group, i.e., Ri ∈ SO3, and position

vector belongs to 3D vector space, i.e., pi ∈ R3. In general, in order to incorporate

map of the surrouding environment into the state space, we represent an object,

which can be preceived as point cloud, features in camera images, as a 3D point-like

feature, denoted as lj ∈ R3 with j ∈ {1, ...,M}. The measurement is represented

as zk, k ∈ {1, ..., K}, along with a pair of match (ij, jk) related to the corresponding

landmark ljk observed at step xik . Given the set of measurements Z = {zk}, the

objective is to recover robot’s trajectory X = xi and the landmark map L = {lj}.

The problem can be formulated as a belief net, or Bayesian network, which

is a directed acyclic graph encoding the conditional independence structure of all

the random variables through factorization. The joint probability distribution with
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respect to such network can be expressed as

P (X ,L,Z) ∝ P (x0)
N∏
i=1

P (xi|xi−1,ui)
K∏
k=1

P (zk|xik , ljk).

In the above equation, P (x0) is a prior on the initial state, P (xi|xi−1,ui) is the

motion model parameterized by a control input ui, P (zk|xik , ljk) is the measurement

model, and we have dropped the non-informative prior on landmarks since we do not

have knowledge of the map in advance. As is standard in the SLAM literature, both

the motion model and the measurement model are assumed to be corrupted with

zero-mean Gaussian noise. More specifically, the motion model is defined by

xi = fi(xi−1,ui) + wi, wi ∼ N (0,Λi),

P (xi|xi−1,ui) ∝ exp
(
− 1

2
‖fi(xi−1,ui)− xi‖2

Λi

)
,

(2.1)

where fi is the state transition function, and the measurement model is defined by

zk = hk(xik , ljk) + vk, vk ∼ N (0,Σk),

P (zk|xik , ljk) ∝ exp
(
− 1

2
‖hk(xik , ljk)− zk‖2

Σk

)
,

(2.2)

where hk is landmark measurement function, and ‖e‖Σ , eTΣ−1e is the squared

Mahalanobis distance.

The formulation using belief net is natural to model the SLAM problem, but

factor graphs have better connection to the optimization process. A factor graph is a

bipartite graph consisting of factor nodes φi ∈ F and variable nodes θj ∈ Θ. Edges

in a factor graph are always between factor nodes and variable nodes, and a factor

graph factorizes the SLAM probabilistic function as
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(a) Bayesian belief network of
a landmark SLAM problem

(b) Factor graph of a land-
mark SLAM problem

(c) Factor graph of a pose
SLAM problem

Figure 2.1: Different representations of SLAM problems.

P (Θ) ∝
∏
i

φi(Θi), (2.3)

where the factors can be derived from motion and measurement models,

φi(xi−1,xi) ∝ P (xi|xi−1,ui),

φi(xik , ljk) ∝ P (zk|xik , ljk).
(2.4)

The optimization of a factor graph follows the same process as above,

Θ∗ = arg max
Θ

∏
i

φi(Θi)

= − arg min
Θ

∑
log φi(Θi),

(2.5)

which leads to a nonlinear least-squares problem,

Θ∗ = arg max
Θ

{ N∑
i=1

∥∥fi(xi−1,ui)− xi
∥∥2

Λi
+

K∑
k=1

∥∥hk(xik , ljk)− zk
∥∥2

Σk

}
. (2.6)

There are a variety of optimization algorithms for the nonlinear equations

(e.g., Gauss-Newton, Levenberg-Marquardt), in which the estimate is iteratively im-

proved by updating rules based on gradients. Although the system typically contains

a gigantic Jacobian matrix after linearization, we can exploit the sparse structure
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rooted in the SLAM problem, where majority of constraints are sequential and loop-

closures don’t occur frequently. Dellaert and Kaess [20] provide more detailed review

of modern sparse graph SLAM solutions, and g2o [21] [22], ceres [23], gtsam [24] are

open-sourced softwares for nonlinear least-squares problems.

2.2 Occupancy Mapping

Constructing maps from range sensor measurements is one of the fundamental tasks

of robotic perception. Many applications such as localization and autonomous navi-

gation (obstacle avoidance and path planning) depend on reliable and accurate map

representations of the environment. In particular, descriptive maps of underwater

structures and terrain is of great interest for environmental monitoring, and for port

and harbor infrastructure inspection, where regular observation by divers is currently

required. Besides accuracy, efficiency is another key challenge in robotic mapping.

Robots equipped with volumetric laser scanners or depth cameras may generate mil-

lions of points in a single scan, which requires the efficient implementation of mapping

algorithms in order to run in real-time applications.

We address the problem of generating an occupancy map from sensor observa-

tions in a static environment under the assumption that poses of a robot are known,

which is viable if the mapping is accompanied by state estimation, e.g., Kalman fil-

ter, pose SLAM. We treat the occupancy status as a random variable, describing

the probability of a location being occupied by obstacles. The occupancy map-

ping is defined as a function from cell location xi ∈ R3 to occupancy probability

mi ∈ [0, 1], f : R3 → [0, 1]. The occupancy can be classified into occupied with

obstacles (p(mi) > poccupied), free of obstacles (p(mi) < pfree), and unknown status

(p(mi) = 0.5) which we generally assume as priors. The goal is to infer the occupancy
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(a) 2D OGM (b) Multi-resolution 3D Octomaps [25]

Figure 2.2: Demonstration of occupancy grid mapping. (a) 2D occupancy grid map-
ping from one sensor measurement consisting of 5 sparse scan lines. The map is col-
ored based on occupancy probability (darker represents occupied). (b) 3D Octomap
is capable of providing a multi-resolution representations for different applications.

probability from sensor observations and robot trajectory,

p(mi|Z,X ) (2.7)

Occupancy grid mapping (OGM) [26], which represents the environment by

grid cells of equal size, has been widely used in exploration and navigation tasks (Fig.

2.2a). It captures the locations of obstacles in the environment by maintaining a

probability of occupancy for each cell which is updated independently and incremen-

tally using Bayes filtering. OctoMaps [25] reduce the memory usage in occupancy

grid mapping by organizing cells in an efficient data structure based on octrees. An-

other benefit of OctoMaps is that they can produce maps of variable resolution from

the same underlying data (Fig. 2.2b). Despite the benefits, the above methods rely

on the assumption that all grid cells are statistically independent, and sensor data

is only correlated with grid cells directly intersected by range beams. As a result

of this strict assumption, sparse sensor measurements will yield discontinuous occu-

pancy maps between adjacent sensor views or scan lines, which may pose a threat

for navigation tasks if path planners deem the gaps to be unoccupied. This has been

highlighted previously as a problem that poses difficulties for robot exploration [27].
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A discontinuous mapping result is shown in Fig. 2.2a, and we can observe cells that

intersect with scan line are considered as occupied, yet the gap between them remains

unknown.

To overcome the limitation, Gaussian processes (GPs), which is a nonpara-

metric Bayesian learning technique used for regression and classification, were intro-

duced into occupancy mapping [28] [29]. This demonstrated that GPs could be used

to achieve rich and reliable probabilistic inference about unobserved areas; gaps in

the sensor data will be assigned a probability of occupancy that is correlated with

neighboring areas covered by the sensor. The approach offers greater flexibility than

previous efforts to capture dependency that are not suitable for online use [30] or

cannot feasibly be extended to 3D mapping problems [31] [32]. However, the major

drawback of GP regression is the high computational complexity of O(N3 + N2M),

where N is the number of training data and M is the number of test data. This high

computational cost limits its scalability to large datasets.

Other approaches have been proposed, including Hilbert mapping [33], which

uses a logistic regression classifier in conjunction with approximate kernels to achieve

comparable performance to standard GP occupancy mapping in less time. A ver-

sion of Hilbert maps which incrementally constructs a 3D Hilbert map online [34],

somewhat mitigating the difficulty in approximating kernel computation for large 3D

environments is proposed, but this method provides only occupancy probability pre-

dictions without associated variances, which may provide deeper information about

prediction uncertainty. Bayesian generalized kernel has been proposed [35], leveraging

recent advances in test-data structures for mapping, sparse kernels, and Bayesian non-

parametric inference, which achieves cheaper computation and comparable accuracy

.
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?

(a) Action selection in exploration prob-
lem

(b) Nearest frontier approach

(c) Information-theoretic approach (d) Uncertainty-aware information-
theoretic approach

Figure 2.3: Three classic approaches to selecting actions during exploration. In the
map, mapped and unmapped areas are colored by white and gray respectively, and
the trajectory and current location of the robot is denoted as a line ending with error
ellipse. Existing landmark is represented as a blue star.

2.3 Autonomous Exploration

We consider the autonomous mobile robot exploration problem in unknown envi-

ronments, where the robot’s objective guiding exploration is to produce a map of

its surroundings accurately and efficiently. In general, the autonomous exploration

problem for mobile robots comprises three stages:

1. The robot identifies candidate locations to explore or paths to follow;

2. A utility function is evaluated for every candidate and the optimal one is se-
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lected;

3. The robot executes the optimal action and updates its current knowledge of the

environment.

The first task is commonly achieved by enumerating frontier locations, or by em-

ploying sampling-based methods such as rapidly-exploring random tree (RRT) and

probabilistic roadmap (PRM), and the third task is simply performed by feedback

controllers. The remaining question is how to properly formulate a utility function

that effectively captures the exploration-exploitation dilemma, i.e., a balancing of

visiting unknown areas to reduce map uncertainty and revisiting known areas to seek

better localization. Here we make the following assumptions for simplicity:

1. There are a certain number of static landmarks, or features, objects, in the

environment which can be used for localization.

2. The movement of the robot is confined in a limited space that is known in

advance.

Without considering the robot’s localization uncertainty, the problem has been

approached by following the nearest frontier [36], choosing sensing actions to maximize

mutual information (MI) [37, 38, 39, 40], using Cauchy-Schwarz quadratic mutual in-

formation (CSQMI) to reduce computation time [41], by combining global planning

with local motion primitives and also refining a trajectory using optimization meth-

ods [42], and by exploring on continuous Gaussian process frontier maps [43]. The

simplified problem, planning with a priori maps, has also been discussed to actively

minimize the uncertainty of known landmarks [44, 45, 46]. Most of the existing re-

search on exploration in unknown environments takes advantage of occupancy grid
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maps, and this paradigm has succeeded in complex applications, including real-time

3D exploration and structure mapping with micro aerial vehicles [47, 48].

If we take into account uncertainty of robot pose or map, an integrated explo-

ration strategy was proposed to combine different utilities [49, 50], e.g., the utility

of information gain over the occupancy grid maps, the utility of travel distance to

the goal, and the utility of localizability, which incorporates the uncertainty of robot

poses and landmarks. Recently, an approach of improving features uncertainty while

maintaining informative actions was implemented on aerial vehicles [48]. However,

these methods ignore the correlation between localization and information gain. High-

uncertainty poses are likely to result in inaccurate occupancy grid maps, limiting the

usefulness of the information gained by exploring unknown regions.



17

Chapter 3

Underwater 3D Mapping using Sonar

Over the last two decades, the application of autonomous underwater vehicles (AUVs)

has proliferated across challenging perceptual tasks such as pipeline and ship hull in-

spection, bathymetric survey, and structure mapping. Many efforts have been devoted

to achieving the autonomy of underwater vehicles for such tasks, and an accurate

representation of the environment is an essential prerequisite for such autonomy. To

acquire such a representation of the environment, optical sensors (cameras) or acous-

tic sensors (sonars) are typically utilized. Although a camera can capture fine details

of the underwater environment, its capability is often limited by the turbidity of the

water. Additionally, illumination changes may make captured data unreliable. On

the other hand, sonar (an acronym for sound navigation and ranging) will function

in water that has high turbidity, offering long-range visibility and a wide aperture.

Sonar takes measurements by emitting pulses of sound and listening for echoes

that are reflected back from submerged objects. However, the longer wavelength of

sound in the water compared to that of light in the air greatly limits the angular

resolution δβ of a sonar device, which can be computed as λ/L, where λ, L denote

wavelength and receiver size. Additionally, the sound propagation is influenced by

a number of factors, such as attenuation due to water absorption, refraction due to

variable density, and scattering from the sea surface and seafloor. Another hurdle to

overcome in order to apply an occupancy mapping algorithm is the loss of elevation

information in the sonar measurement, which will be discussed in Sec. 3.2.

In this chapter, we first provide a literature review of the sonar mapping prob-

lem, then introduce the sonar sensor model, and two proposed approaches to perform-
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ing descriptive 3D mapping under sparse sonar measurements are presented. While

the first solution employs a laser-like sensor model, which naively assumes zero eleva-

tion for range measurements, the sonar is accurately modeled to conduct localization

and terrain mapping in the second solution.

3.1 Related Works

One of the earliest works to produce underwater 3D maps employed a particle fil-

ter in combination with an occupancy grid map in submerged tunnels [51], using a

robot equipped with a Doppler velocity log (DVL) and multiple sonar arrays. For

a robot equipped with a DVL and a single-beam scanning sonar, the Hough trans-

form was used to extract line features to produce 2D maps of man-made, structured

environments [3]. Some works have used cameras to collect additional observations

given sufficient illumination; for example, a camera and multi-beam profiling sonar

are combined for ship hull inspection [4].

Among much of the underwater simultaneous localization and mapping litera-

ture (SLAM), mapping is limited to 2D representations of the environment [3]. How-

ever, constructing a 3D representation of the underwater environment with sonar is

challenging due to its physical limitations. Sonar is plagued by high levels of noise

and low resolution, and the lack of an elevation angle in a sonar measurement is an-

other major obstacle to achieving accurate 3D mapping. In [52], two sonars mounted

orthogonally on a torpedo-shaped AUV are used to support scan-matching within a

SLAM framework, and the vertical sonar with a narrow beam is used for 3D map-

ping. In [9], point features are extracted and registered to those from other sonar

images, and the pairwise transformation between images is used to constrain the ve-

hicle. However, this work assumes that an imaging sonar is aligned with the terrain
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surface, otherwise the transformation is erroneous. The detailed model of a ship hull

can be generated by configuring a multibeam sonar in profiling mode with narrower

vertical beam-width [4]. Elevation recovery from acoustic shadows is proposed in [53],

but the application is limited when shadows do not exist.

Acoustic structure from motion (ASFM) [54] is proposed to address the am-

biguity of the elevation angles associated with an imaging sonar’s returns from the

surrounding environment. The influence of different robot motion primitives on this

degeneracy is discussed in [54], [55]. Data association in ASFM based on repro-

jection error is proposed in [56]. Non-parametric and semi-parametric factors are

introduced to handle under-constrained landmarks in [57]. Degeneracy is determined

by examining the eigenvalues of the Jacobian matrix of a specific landmark. How-

ever, under-constrained landmarks are beneficial only for localization, and elevation

angles can’t be accurately estimated from graph optimization. The state-of-the-art

ASFMs still lack a robust data association method, and a general motion primitives

is required for accurate mapping.

3.2 Sonar Sensor Model

Given a feature ls = [x, y, z]T in the sensor frame represented in Cartesian coordinates,

we can describe it as s = [r, θ, φ]T in spherical coordinates, where r is the range to

the sensor origin, θ is the azimuth and φ is the elevation angle (see Fig. 3.1). The

conversion between these two forms can be expressed with the following equations:

ls =


x

y

z

 =


r cosφ cos θ

r cosφ sin θ

r sinφ

 (3.1)
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Figure 3.1: Imaging sonar model. A feature p can be represented as [r, θ, φ]T in a
spherical coordinate frame. Note that the range r and the azimuth angle θ of p can
be directly derived from measurements, while the elevation angle φ is lost in the 2D
sonar image.

s =


r

θ

φ

 = h(ls) =


√
x2 + y2 + z2

arctan 2(y, x)

arctan 2(z,
√
x2 + y2)

 . (3.2)

Though the range r and the azimuth angle θ of feature ls can be directly

derived from the 2D sonar image, the elevation angle φ = hφ(ls) is lost due to the

wide vertical aperture. In other words, the mapping of a 3D world into a 2D sonar

image eliminates the elevation information, which results in the ambiguity of features

appearing along any |φ| ≤ φmax arc. Although the vertical aperture is significantly

reduced by leveraging a lens or using a profiling sonar, a large field of view in elevation

angle is often beneficial for a robot’s situational awareness.

An example of sonar image is shown in Fig. 3.1b. Due to the loss of elevation,

objects that have same bearing and range values will appear at the same location

in the sonar image, even with at different heights (see red and black objects). Also,

swapping blue and green objects has no impact on the sonar image.
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3.3 Gaussian Process Occupancy Mapping

Sonar measurements are sparse, especially for a scanning sonar with fewer beams.

To overcome the limitation of traditional occupancy grid mapping under sparse mea-

surements, we first propose to use Gaussian Process occupancy mapping for rich

inference over unobserved space, and some improvements are made to enable near

real-time computation.

Briefly speaking, GP occupancy mapping collects sensor observations and the

corresponding labels (free or occupied) as training data; the map cells comprise test

data, which are related to the training data using covariance functions. After a

regression is performed, we obtain a cell’s probability of occupancy by “squashing”

regression outputs into occupancy probabilities using binary classification functions.

This procedure is detailed below. Let us consider the noisy observation model,

y = f(x) + ε, (3.3)

where x is the input vector, y is the observed target value of the latent function value

f(x) added with noise ε ∈ N (0, σ2
n). A Gaussian process is defined as a distribution

over functions [58],

f(x) ∼ GP(m(x), k(x,x′)) (3.4)

with mean function m(x) which we take as zero and covariance function k(x,x′).

Given n training points X = {xi}ni=1 and observation vector y, a Gaussian process

predicts the latent values f∗ at m test points X∗ = {x∗i}mi=1 to be

f∗|X,y, X∗ ∼ N (f̄∗, cov(f∗)). (3.5)
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Here we use a compact notation to denote covariance matrices: K = K(X,X), K∗ =

K(X,X∗), K∗∗ = K(X∗, X∗). The mean and covariance of the Gaussian process can

be written as

f̄∗ = KT
∗ (K + σ2

nI)−1y, (3.6)

cov(f∗) = K∗∗ −KT
∗ (K + σ2

nI)−1K∗. (3.7)

In the case of 3D occupancy mapping, we have a set of training input data X, where

xi ∈ R3 is an occupied point in the environment observed by the sensor or a free

point sampled along sensor beams, and an accompanying set of training target data

Y , where yi = 1 or -1 for occupied and free points respectively.

3.3.1 Covariance Functions

Covariance functions, or kernel functions, define the similarity between a pair of

points: if they are close to each other, they tend to have the same target value [58].

A common choice for GPs is to use a squared exponential covariance function [58],

and a sparse covariance function was introduced in [59] that achieves comparable

smoothness, while reducing to zero correleration when two points are a specified

distance apart. However, such functions are often too smooth to capture the sharp

variations in occupancy that typically occur in real-world mapping scenarios. To

address this issue, the Matérn covariance function has been applied successfully in GP

occupancy mapping [60] [43]. The Matérn covariance function, with its smoothness

parameter set to ν = 3/2, is defined as

k(r) = σ2
f

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
, (3.8)
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where r = ||x − x′||, and the two hyperparameters σ2
f and l are prior signal vari-

ance and characteristic length-scale. It’s worth noting that the correlation drops

quickly as the distance between points increases. Based on this property, in this

paper we approximate Gaussian process regression by using a subset of the training

data; specifically, we only utilize nearby training data to predict the value of a given

test point.

3.3.2 Binary Classification Functions

In order to “squash” the output of GP regression into an occupancy probability in

the range of [0, 1], we adopt a logistic regression model that leverages both mean µi

and variance σ2
i at every test point [43],

p(y = 1|xi) =
1

1 + exp(−γωi)
, (3.9)

where ωi = σ2
minµi/σ

2
i is the weighted mean, σ2

min is the minimum variance, and γ is a

positive constant. A classification is performed by combining the resulting occupancy

probability from (7) and variance of the predicton from (5),

state =


free p < pfree, σ

2
i < σ2

t

occupied p > poccupied, σ
2
i < σ2

t

unknown otherwise

(3.10)

where σ2
t is the variance threshold, which expresses the confidence we have in the

predicted occupancy probability.
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Figure 3.2: 2D demonstration of our approach with an example laser scan, where
dots represent test points and the stars and crosses along scan lines represent training
data (hits and free points, respectively). Left : Setup for predicting the occupancy
probability of Block #3. The extended block consists of 5 blocks for which separate
regressions are performed using the data contained in each; the resulting predictions of
Block #3 from each regression are fused via BCM. Middle: GP occupancy mapping
with test-data octrees before pruning. There are 16 depth-two octrees which are
separated by thick grid lines in the map. Right : Final map after pruning.

3.3.3 Spatial Partitioning with Test-Data Octrees

Our choice of data structures for occupancy mapping will have important implications

for the method’s time and memory complexity. By representing the environment us-

ing equally sized grid cells, we can achieve constant access and write time. However,

the downside is that memory consumption grows cubically in the dimension of the

environment. An alternative is to use octrees, data structures which recursively par-

tition a space into groups of smaller, equally sized nodes such that every node in the

tree has eight children. Octrees are a memory efficient approach for representing the

entire 3D environment because the partitioning process need only be implemented in

spaces containing observed structures, yielding a multi-resolution map. However, as

a result of its tree structure, octrees suffer from an access complexity of O(log(d)),

where d is the maximum depth of the tree.

Octrees have been applied successfully to 3D occupancy grid mapping in the

OctoMap framework [25]. By casting rays in the octree according to a range sensor’s
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observations, OctoMap incrementally updates occupancy probabilities of the cells

that rays pass through. In an OctoMap, inserting or partitioning cells occurs in the

vicinity of sensor beams only, which conforms to the philosophy of octrees: partition-

ing as needed. Unlike occupancy grid mapping, GP occupancy mapping attempts

to predict the contents of many spaces where sensor data has not directly landed,

and without knowing where the boundaries in occupancy will lie, we must deploy a

fine discretization everywhere. In this case, a conventional octree is inappropriate for

storing map information; it offers advantages neither in space nor in time considering

that all leaf nodes need to be partitioned and initialized in the beginning.

Therefore we present a new data structure called test-data octrees, which are

pruned to lower resolution over time instead of branching to a higher resolution. When

all sibling nodes within the outermost layer of an octree attain the same designation

as either free or occupied, these nodes are pruned from the tree and only their parent

remains. This is the case not only for representing obstacles in the map, but also

for the test data used repeatedly in Gaussian process regressions from one robot

measurement to the next. In instances where the octree is pruned, eight test data

points, each located at the centroid of its respective grid cell, are reduced to one point

located at the centroid of the parent cell. This is illustrated in a two-dimensional

example at the bottom of Figure 3.2 using quadtrees. In addition to reducing the

size of the test data, the map’s memory usage can be reduced by pruning nodes with

the same state (free or occupied). In Figure 3.2, 20 free nodes are pruned, which

means that 23% of the memory in use can be freed. Among other general advantages

are the fact that we can initialize octrees with pointers, and thus octree cells can

be dynamically allocated as a robot explores an unknown environment, and we can

retrieve test points and update their states in near-constant time if a tree has a small

number of layers.
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3.3.4 Nested Updates with BCMs

Algorithm 1: GPOctoMap-NBCM

1 M← {Bi = ∅}, i = 1, . . . , K;
2 G ← {gi = ∅}, i = 1, . . . , K;
3 while !MappingComplete do
4 Zn ← SensorHits();
5 Mn ← ∅; // local blocks need to be updated

6 for Bi ∈M do
7 if Intersect(Bi,Zn) then
8 Mn ←Mn ∪ Bi;

9 for Bi ∈Mn do // training in blocks

10 if IsEmptyOctree(Bi) then
11 Bi ← CreateOctreeInBlock(Bi);
12 X,y← GetTrainingPoints(Zn);
13 gi ← GPRegression(X,y);

14 for Bi ∈Mn do // BCM fusion in extended blocks

15 for Be ∈ FindExtendedBlocks(Bi) do
16 X∗ ← GetOctreeLeafNodes(Be);
17 f∗,var∗ ← GPPredict(ge, X∗);
18 Bi ← BCMUpdate(Be, f∗,var∗);

19 for Bi ∈Mn do
20 PruneNodes(Bi);

21 OccupancyProbs← ∅;
22 for Bi ∈M do
23 if !IsEmptyOctree(Bi) then
24 x∗, f∗,var← GetOctreeLeafNodes(Bi);
25 {x∗,p} ← BinaryClassification(f∗,var∗);
26 OccupancyProbs← OccupancyProbs ∪ {x∗,p};

27 return OccupancyProbs;

Using a Bayesian Committee Machine (BCM) [61], a separate GP regression

may be performed over each newly arrived sensor observation, and the resulting es-

timates can be fused, either in batch or one new observation at a time. Suppose

the entire training space D is split into K data sets such that Di = {Xi,yi}, for
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i = 1, . . . , K. The formulation of the BCM may then be expressed as:

m(f∗|D) = cov(f∗|D)−1

K∑
i=1

cov−1(f∗|Di)m(f∗|Di), (3.11)

cov−1(f∗|D) = −(K − 1)σ−2
f +

K∑
i=1

cov−1(f∗|Di). (3.12)

We will approximate the resulting covariance matrices with variance matrices, remov-

ing off-diagonal indices as proposed in a prior application of this method [62]. This

prevents the potential for cubic complexity in the number of test data, while still

allowing rich correlation to be expressed relating a subset of training data to every

point of the test data.

In addition to leveraging the BCM to update the map one measurement at

a time, as employed in [62] and [43], the occupancy information revealed by a new

measurement is recovered in a modular manner, over a series of several GP regressions.

First, we determine how many distinct, non-overlapping sets of test data will be

updated with training data from the new measurement. In our conservative approach

to GP occupancy mapping, in which accurate classification is the goal, the test data is

drawn separately from every block intersected by one or more range beams. Blocks are

comprised of several occupancy grid cells, and are maintained at the same resolution

as the parent cells in the outermost layer of our test-data octrees. For every block

of test data, the corresponding training data is comprised of all portions of the new

measurement’s range beams that pass through the block’s extended block, a larger

surrounding region that allows more distant training data to influence a block’s test

data. The notion of using an extended block to derive the training data applied to

an individual block’s test data was first suggested in [62].

We define an extended block to be the set of neighboring blocks with faces
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adjacent to the block containing the test data of interest. An example of this definition

is given in Figure 3.2. In our aggressive approach to GP occupancy mapping, we

perform a GP regression for the test data in every block for which range beams pass

through some portion of the extended block. This extends the influence of a new

measurement to test data in neighborhoods that were not necessarily observed by the

sensor. Our aggressive approach also implements a higher variance threshold in Eq.

3.10 than the conservative approach.

Although the size of a given set of training data is reduced significantly by par-

titioning the space into blocks and confining training points from a new measurement

to extended blocks, the result may often be unsuitable for real-time mapping applica-

tions (see [62] or Table 3.1). In the results to follow in Table 3.1, the parameterization

labeled BCM-NP can be regarded as Kim’s method [62] with different covariance and

logistic functions to provide a one-to-one comparison with our proposed method. The

problem can be further divided-and-conquered, however, by applying a BCM to a sin-

gle block’s regression, and splitting apart the training data that lies in an extended

block. A separate GP can be trained for each subset of the training data, using a

BCM to fuse the results and predict occupancy probabilities in each block. This

second-layer BCM is formulated according to the following equations:

m(f∗|Di) = cov(f∗|Di)
−1

E∑
j=1

cov−1(f∗|Dij)m(f∗|Dij),

cov−1(f∗|Di) = −(E − 1)σ−2
f +

E∑
j=1

cov−1(f∗|Dij),

where E is the number of segments into which an extended block’s training data is

partitioned (3.2). At this level, we do not further partition the test data because we

want the diverse neighborhood of training data in the extended block to be applied
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to all test data. The BCM approximation, as a transductive learning method, will

weigh the training data appropriately according to their proximity and relevance to

the test data [63].

By performing separate regressions for test data segregated into blocks, whose

respective training data are segregated into extended blocks, the computational com-

plexity of a regression decreases from O(N3 +N2M) to O(N3/K2 +N2M/K2), where

K is the number of blocks. By dividing each extended block’s training data into E

segments, and fusing the result with a BCM, the complexity is further reduced to

O(N3/(K2E2) + N2M/(K2E)). It should also be noted that this procedure affords

the option of parallelizing the computation of the many small, separate GP regres-

sions required to update the map with a new sensor observation. The full procedure

proposed in this paper, including both the use of test-data octrees and the nested

application of BCMs to the map update, is summarized in Algorithm 1.

3.3.5 Experiments on UGVs

In this section, we demonstrate our method using simulated experiments, which

were conducted in Gazebo where the ground truth for both maps and robot poses

were known precisely, and on three large-scale real datasets: Freiburg-079 Corri-

dor1, Freiburg Campus1, and SpaceBot Arena2. We sub-sampled the raw data using

VoxelGrid filtering in Point Cloud Library (PCL) [64] with resolution 0.1m. As for

OctoMaps, we used the original point cloud without sub-sampling.

As a consequence of these limited observations, the simulated robot did not

obtain a complete scan of the environment. When a laser beam swept over flat

surfaces, e.g., walls and floors, gaps between beam returns increased. As a result, the

1http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
2http://www.ais.uni-bonn.de/mav_mapping/

http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
http://www.ais.uni-bonn.de/mav_mapping/
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Figure 3.3: Mapping results in simulated “structured” (top row) and “unstructured”
(bottom row) environments. From left to right : ground truths, accumulated raw point
clouds, OctoMap, conservative GP mapping, and aggressive GP mapping. All maps
are generated with 0.1m resolution and cells with occupancy probability > 0.7 are
visualized with colors indicating cell height.

raw data contained a substantial number of gaps (second column in Fig. 3.3). The

figures in the third column of Fig. 3.3 depict conventional occupancy grid mapping

with OctoMap; free-space gaps remain in the final result while the predicted occupied

cells precisely correspond to laser hits in the raw data, which is of limited utility for

further tasks. In contrast, our proposed method reasonably filled in the volumes

between adjacent laser scans, which resulted in smooth surfaces (fourth column in

Fig. 3.3). This spatial inference capability was enhanced in our “aggressive” mapping

results (fifth column of Fig. 3.3): our method was largely successful in predicting

occupancy in the regions devoid of measurement.

We further analyze the accuracy of our proposed method. With full knowledge

of ground truth, the accuracy of the maps can be inspected using Receiver Operating

Characteristic (ROC) curves. ROC curves in Fig. 3.4 show that our conservative

method GPOctoMap-NBCM outperforms OctoMap in two ways: 1) GPOctoMap-

NBCM has fewer incorrectly classified negatives (occupied cells), which yields a lower

false positive rate in the unstructured environment; 2) while maintaining a low false
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Figure 3.4: Receiver operating characteristic (ROC) curves for occupancy mapping
with simulated data in the ”structured” and ”unstructured” environments depicted
in Figure 3.3. Free is considered to be a positive label. See Table 3.1 for the meanings
of the labels in the plot legends.

positive rate, GPOctoMap-NBCM is able to achieve a higher true positive rate, or

recall, which indicates that GPs can correctly predict more positives (free cells).

With regards to aggressive mapping, we see an increase in the false positive rate

and a decrease in the true positive rate, which can be explained by the fact that

its predictions are not entirely correct. GP occupancy mapping without test-data

octrees and nested BCMs marginally outperforms our “conservative” approach, but

at the cost of requiring more than an order of magnitude of additional computation

time, as detailed in Table 3.1.

For the real datasets, as shown in Fig. 3.5, GPOctoMap-NBCM improved upon

OctoMap’s coverage by successfully inferring the contents of gaps to a large extent.

It’s worth noting that our “aggressive” GP mapping is able to predict most of the

ceiling in the FR-079 dataset. The richness of inference signals at least two potential

applications of GPOctoMap-NBCM. First, it is able to build a map with improved

quality using only a subset of sensor measurements, which means a cheap and low-

resolution sensor can be used for mapping. Second, the time spent on scanning
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Figure 3.5: 3D maps built with OctoMap (first column) and GPOctoMap tuned
1) conservatively (second column) and 2) aggressively (third column). From top to
bottom: Freiburg-079 corridor dataset, Freiburg campus dataset and Spacebot Arena
dataset. All maps are built at 0.1m resolution and cells are colored corresponding to
cell height.
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Dataset (m3) Scans Points/Scan Method Time (s) Time/Scan (s)

Sim Structured Data
10.0× 7.0× 2.0

12 3500

BCM-NP 6.57 0.55
NBCM-P 0.44 0.04

NBCM-P+ 0.37 0.03
OctoMap 0.20 0.02

FR-079
43.8× 18.2× 3.3

66 89445

BCM-NP 724.10 10.97
NBCM-P 10.96 0.17

NBCM-P+ 9.57 0.15
OctoMap 6.71 0.10

FR Campus
292.0× 167.0× 28.0

81 247817

BCM-NP N/A N/A
NBCM-P 329.95 4.07

NBCM-P+ 294.62 3.64
OctoMap 242.88 3.00

Spacebot Arena
72.3× 71.4× 12.9

8 296734

BCM-NP 1189.42 148.68
NBCM-P 33.06 4.13

NBCM-P+ 27.35 3.42
OctoMap 33.65 4.21

Table 3.1: Benchmarking of experimental results. Sub-sampled data are used for GP
occupancy mapping whereas OctoMap uses original full-density data. In the table,
“NBCM” refers to our proposed nested BCM, which includes BCMs applied within
an extended block and also to sequential observations; “BCM” only applies fusion to
sequential observations. Methods having “P” use test-data octrees to prune nodes
with the same state; “NP” means no pruning. We also explore the “aggressive”
variant of our GP mapping formulation, which is denoted as “+”.

can be reduced without the need to cover the whole space. In addition to being

superior in runtime to prior variants of GP occupancy mapping (represented by the

BCM-NP parameterization), the runtime of GPOctoMap-NBCM is also comparable

to OctoMap’s, as shown in Table 3.1. In the spacebot arena dataset, GPOctoMap-

NBCM even exceeds OctoMap in runtime because there exists a large volume of free

space, which dramatically reduces the number of test data through octree pruning.
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3.4 Terrain Mapping with a Multi-Beam Imaging Sonar

Imaging sonar significantly improves the perception capability compared to a scanning

sonar; it has a wide horizontal aperture with hundreds of sensing beams, and it’s

able to acquire measurements at a higher rate. However, imaging sonar still suffers

from the loss of elevation information due to a wide vertical aperture. Although

3D locations can’t be deduced from a single image, which is composed of two types

of information, bearings and ranges, it’s feasible to estimate feature positions from

multiple views of the scene. In this section, we show that by enforcing a terrain

model on the mapped environment an accurate 3D map is achieved through SLAM

optimization in which the data association is provided by optical flow.

We formulate feature-based SLAM as a least-squares problem using the same

notation as in Sec. 2.1. We assume a Gaussian measurement model between robot

state xi ∈ X and feature position lj ∈ L, and we assume that the process model given

an input ui ∈ U is as follows:

xi = fi(xi−1,ui) + wi, wi ∼ N (0,Λi), (3.13)

zk = hk(xik , ljk) + vk, vk ∼ N (0,Γk), (3.14)

where ik, jk denote the associated state and feature corresponding to the k-th mea-

surement (see Sec. II.C). The evolution of state is modeled by f using measurements

from navigation sensors, including an inertial measurement unit (IMU) and Doppler

velocity log (DVL). The observation is predicted in h by transforming features from

the global frame to the sonar frame parameterized in spherical coordinates, or for-

mally, h(x, l) = h(ls) in Eq. 3.2. The estimate is obtained by solving the nonlinear
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least-squares equation,

X ∗,L∗ = arg min
X ,L

∑
i

||xi − fi(xi−1,ui)||2Λi +
∑
k

||zk − hk(xik , ljk)||2Γk .

In previous work on 3D SLAM using imaging sonar, no constraints are imposed

on the elevation angle, and its ambiguity is clarified by solving the least-squares equa-

tions, which may contain measurements of the same feature from a variety of perspec-

tives. However, in practice, the nonlinear system regularly becomes ill-posed without

a proper initial estimate and sufficient sensor motion [54, 55]. Advanced multi-beam

sonars feature a narrow vertical aperture (12◦ in our experiments), and given the

mounting configuration shown in Fig. 3.11a, elevation angles of observed features

are distributed symmetrically around zero. Therefore in this work, an imaginary el-

evation angle φ̃ is incorporated into the measurement vector z = [r, θ, φ̃]T , which is

varied based on the predicted elevation hφ(ls),

φ̃ =


φ̂, : |hφ(ls)| ≤ φmax

0, : |hφ(ls)| > φmax.

(3.15)

The measurement noise covariance matrix is simplified to Γ = diag([σ2
r , σ

2
θ , σ

2
φ]), with

the standard deviation of elevation noise set to half the vertical aperture, and φmax =

3σφ.

3.4.1 Feature Tracking

As a variety of noise exists in sonar images, such as Gaussian, impulse and speckle

noise, we rely on the A-KAZE feature detector [65] as in previous work on this

subject [57], which is designed to describe features at different smoothing scales while
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Figure 3.6: Feature tracking example in sonar frame Fig. 3.12. Extracted A-KAZE
features are labeled as black ×, and the corresponding feature tracks are shown in
colored lines.

retaining details. An example of extracted A-KAZE features is shown in Fig. 3.6.

The correspondence (ik, jk) between features detected in different sonar frames

has been solved through data association techniques [56, 10] and point cloud regis-

tration [9]. Data association requires the computation of feature uncertainty in 3D

space, which is computationally expensive in the presence of dense features. The

ambiguity of elevation angles also presents a challenge.

In this work, our ROV moves at a relatively slow speed, and we seek to match

features by tracking based on optical flow. Optical flow, specifically the Lucas-Kanade

method [66], is developed on two assumptions: (1) feature intensities do not change

between consecutive frames, and (2) neighboring pixels have similar motion. Although

acoustic returns from objects at different elevation angles have different intensities,

the assumptions hold well in practice with sonar images acquired at high frequency

and with slow motion.
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The feature tracking works as follows. We extract A-KAZE features that

are used for tracking in the initial frame, and new features are introduced if they

are not in close proximity to current features. Tracking of a feature stops when

the minimum eigenvalue criterion isn’t satisfied in the Lucas-Kanade method, or

the distance between descriptors computed at previous and current feature locations

is larger than a designated threshold. The tracking history of A-KAZE features is

visualized in Fig. 3.6. Feature motions are consistent with the trajectory, but tracking

is error-prone when the range to a feature is larger than 2.0 meters. One reason is

that sonar has limited angular resolution, causing sonar imagery further away from

the origin to be blurrier along the bearing-axis. There are also a few short feature

tracks that don’t start from the top of an image due to tracking failure. To some

extent, estimation error is attributed to the insufficient measurement constraints from

short tracks.

3.4.2 Gaussian Process Terrain Models

In this section, we discuss the Gaussian Process terrain model and the approximation

methods required for it to be integrated into a factor graph.

We frame the mapping part of SLAM as a terrain modeling problem. Let

x− = [xi, yi]
T be the x − y location of feature li, let mi = zi be the height of the

feature, which is defined as the vertical distance from the water surface to the feature

in Fig. 5.4, and let X−M×2 and mM×1 be the 2D location matrix and height vector for

feature set L. The terrain model maps 2D location to height m = g(x−) .

Gaussian Processes (GPs) are a non-parametric approach to learn a latent

function enforcing correlation among input data. We use Gaussian Process regression

to model the terrain data [67], and thus feature heights are spatially dependent in
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(a) Factor graph with terrain factors

y

x

(b) Terrain factor construction using CLT

Figure 3.7: Terrain factors (orange) connecting two landmark nodes are constructed
on the edges of a Chow–Liu tree. The tree is built with projected 2D features {x−i },
and nodes are colored by optimized terrain height zi for visualization.

spite of the fact that they are independently observed and tracked. Mathematically,

g(x−) ∼ GP(0, k(x−,x−′)), (3.16)

in which the mean function is zero, and k(·, ·) is the covariance function that defines

the similarity between a pair of height variables. Under the GP assumption, the

aggregated height vector is distributed as a joint Gaussian distribution with dense

covariance matrix,

m ∼ N (0, K(X−, X−)). (3.17)
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The predicted mean at any location given existing observations is expressed as

E[m∗] = K(X−∗ , X
−)K−1(X−, X−)m. (3.18)

GPs bring several benefits to the terrain reconstruction problem. Under-

constrained landmarks can be handled more effectively, whether this stems from the

fact that feature detection is less accurate on sonar images with low signal-to-noise

ratio, or from an overly simplistic motion a robot has executed. The addition of a GP

model imposes constraints on the shape of the terrain formed by the observed features.

The impact of a GP terrain model is depicted in Fig. 3.8, where 20 samples are drawn

from the distributions
∏
N (φi|φ̃i, σ2

φ) and
∏
N (φi|φ̃i, σ2

φ)N (m|0, K(X−, X−)). Here,

we only consider range and elevation angle, and we use a feature’s true elevation as a

mean value. In addition to the above advantages, features are sparse in underwater

environments, thus leaving gaps between 3D points. GP regression enables rich and

reasonable inference in regions without measurements.

3.4.3 Terrain Factors

The GP model is essentially a giant factor involving all landmark nodes, and the

optimization cost is prohibitive. In order to implement correlated terrain factors

while maintaining sparsity of the factor graph, we approximate the full GP model

with a Gaussian Process random field [68] defined on a tree structure. A product of

conditional distributions is implied from a tree structure,

p(m) ≈ qtree(m) = p(mroot)
∏
i6=root

p(mi|mπi), (3.19)

where πi is the parent of node i.
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Figure 3.8: Terrain height estimates resulting from 20 noise-corrupted measurements
of the 20 features in the sonar’s field of view, both without (left) and with (right) a
GP terrain model. The actual (flat) ground is marked in black while terrain estimates
are colored. The zero-elevation plane of the sonar is represented as a black line.

Given the assumption that [mi,mπi ]
T are distributed as a Gaussian process,

we can formulate the joint distribution and conditional distribution as

mi

mπi

 ∼ N(
0

0

 ,
 kii kiπi

kπii kπiπi

), (3.20)

mi|mπi ∼ N (µi|πi ,Σi|πi)

= N (kiπik
−1
πiπi

mπi , kii − k2
iπi
k−1
πiπi

), (3.21)

where kij is defined as k(x−i ,x
−
j ). Accordingly, the terrain constraint is expressed as

mi = µi|πi + εi, εi ∼ N (0,Σi|πi). (3.22)

The terrain factors are error functions between two elevation variables, which in turn
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are incorporated into the least-squares minimization in Eq. 3.15,

||mi=root||2kii +
∑
i6=root

||mi − µi|πi||2Σi|πi . (3.23)

3.4.4 Implementation Details

The tree structure relating a set of features is determined using the Chow-Liu al-

gorithm [69, 70], which constructs the Chow–Liu tree (CLT) by minimizing the

Kullback–Leibler divergence between the joint Gaussian distribution and the ap-

proximated distribution. In essence, the problem is to find the maximum mutual

information spanning tree on a graph, which contains edges connecting any two 2D

points with weights defined by the mutual information between two random elevation

variables,

I(mi,mj) = −1

2
log(1− ρ2), (3.24)

where ρ =
kij√
kiikjj

is the correlation coefficient. The mutual information is mono-

tonically decreasing with respect to the Euclidean distance between two 2D points

if we use a stationary covariance function. As a consequence, the maximum mutual

information spanning tree is equivalent to the Euclidean minimum spanning tree, and

searching can be limited to edges in a Delaunay triangulation of 2D points.

The terrain factor requires the 2D location x− of a feature to compute the

conditional distribution in Eq. 3.21. Since our vehicle’s motion is mostly along the

x-axis (forward), ambiguity in feature position is likely to appear along the z-axis

[54]. Take the sensor configuration shown in Fig. 3.11a as an example. The spread

due to elevation change has less impact on the projected x− y plane than it does in

z:

∆z

∆xy
=
r sin(20◦ + 6◦)− r sin(20◦ − 6◦)

r sin(20◦ − 6◦)− r cos(20◦ + 6◦)
≈ 2.75. (3.25)
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Therefore, we optimize the trajectory and feature positions without introducing ter-

rain constraints, and then terrain factors are constructed upon estimating the 2D

feature locations X−, followed by further optimization of the whole system.

3.4.5 Experiments in Simulation
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(b) GP terrain maps using feature points

Figure 3.9: Simulation results of terrain reconstruction. From left to right: algorithm
without terrain factors, with terrain factors, and ground truth. The trajectory esti-
mate and ground truth are represented by green and black lines, respectively. Features
and maps are colored according to depth (red represents higher terrain elevation).

The simulation environment is designed to emulate our subsequent real experi-

ment in a towing tank, and is aimed at evaluating our algorithms quantitatively. The

vehicle follows a straight-line trajectory (z = 1.0 m) as shown by the black line in Fig.

3.9a from y = 7.5 m to y = −5 m over 60 seconds. A random terrain is generated with

average depth at z = 1.5 m. We assume a limited number of features on the terrain

are trackable, 200 of which are in the field of view. Vehicle poses are uniformly sam-

pled at intervals of 0.2s, and at each pose, sonar measurements are simulated. The

sonar has a field of view of r = [0 m, 3 m], θ = [−35◦, 35◦] and φ = [−15◦, 15◦], and

Gaussian noise is added to range and bearing measurements σr = 0.0025 m, σθ = 0.01
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Figure 3.10: Results from the simulation of Fig. 3.9. Box plots with quantiles are
used for visualizing error distributions with outliers.

rad. We also introduce randomness into feature tracking across consecutive frames.

Consider two observations of the same feature at step i and i+ 1, ip and [i+ 1]q, each

being assigned to landmarks jp and jq respectively. We assume that a feature can be

successfully tracked, i.e., it is assigned to the same label in the current frame as it is

in the previous frame, with probability 0.95, and thus P (jp = jq) = 0.95.

The experiments are repeated for 50 independent trials to evaluate perfor-

mance, and one example trial is visualized in Fig. 3.9. We analyze three types of

error of the SLAM result. First, localization error is computed as the Euclidean dis-

tance between estimated vehicle position and ground truth position. Secondly, we

compare the mapping error as the distance between estimated feature position and

ground truth position. Thirdly, we perform Gaussian process regression using esti-

mated feature points (X−,m) as training data to produce a height map as shown

in Fig. 3.9; the height error is composed of the difference between prediction and

ground truth at every location.
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DVL

Camera

Sonar

20°

(a) BlueROV2 system overview (b) A pegboard ramp

Figure 3.11: Our experimental platform BlueROV is equipped with DVL and multi-
beam imaging sonar. The sonar mounted at 20 degrees downward is used to observe
objects on the floor, including a pegboard ramp.

All results are presented in Fig. 3.10 using box plots to provide more infor-

mation on the error distribution. It is clear that all types of error exhibit longer

tails without adding terrain factors. GP regression in post-processing aids the ter-

rain height estimate when feature error is small enough, however, it is not helpful

when dealing with abnormalities. Overall though, smoothness constraints signifi-

cantly reduce elevation error when applied in the form of terrain factors during graph

optimization.

3.4.6 Experiments on ROVs

Similar data was gathered using the BlueROV2, with additional sensors (see Fig.

3.11a). IMU data from a VectorNav VN-100, body velocity from an RTI SeaPilot

DVL (600 MHz), and depth from a Bar30 pressure sensor on the BlueROV2 were used

for constructing odometry factors in GTSAM. We used the Oculus M750d multi-beam

imaging sonar, operated in 1.2MHz mode with a field of view of maximum range 3

meters, horizontal aperture 70◦ and vertical aperture 12◦. The sonar image updates

at 10Hz and has range resolution of 0.005 m and an angular resolution of 0.0024 rad.
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(b) Sample near location C

Figure 3.12: Two representative camera and sonar images near location B/C (Fig.
3.13a) where one of pegboards is in the field of view. In the sonar images (colored by
intensity), A-KAZE features are marked with ×, and red features highlight the peak
heights of the pegboards, which are used in Table 1.

The experiment was conducted in the Stevens towing tank. We placed two

pegboard “ramps” at the bottom of the tank. Illustrative representations of the

pegboards are shown in Fig. 3.11b. Each pegboard is 80 cm × 40 cm, and two

pegboards form a ramp with height 20 cm. During the experiment, the vehicle is

driven at a fixed depth of 1m and an approximate speed of 0.15m/s. The trajectory

of the whole operation, which has a length of 8 meters over 1 minute, is shown in

Fig. 3.13a. The two pegboards are marked as B and C respectively in Fig. 3.13a.

The trajectory avoids regions directly above the pegboards to ensure successful DVL

bottom tracking.
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(b) GP terrain maps using feature points

Figure 3.13: Experimental results in water tank. From left to right: algorithm without
terrain factors, with terrain factors. See Fig. 3.9 for notations. The locations of two
pegboards are marked by B/C, and a sample region of the tank floor is marked A.
Pegboards are visible in GP terrain maps, but outliers are pervasive around pegboards
without adding terrain constraints.

From the feature point cloud and predicted height map (Fig. 3.13), two pro-

truding regions (B and C) are visible using the proposed terrain factors, whereas

treating features independently produces more erroneous estimates. However, terrain

heights near the origin and the top boundary of the map gradually drift away from

the ground truth. These regions are observed from a limited span of elevation angles,

and as a consequence, those under-constrained features stay near the initial estimate

with zero-elevation. Although terrain factors build pairwise connections between two

feature nodes, they cannot prevent height from drifting due to degeneracy, provided

that the observed terrain surface is smooth.

With regard to quantitative analysis, we only inspect the height of the ramp

above the tank floor. Features that are likely to lie on the ramp peaks are manually

selected in the sonar images as depicted in Fig. 3.12 using red × marks. The depth

of the tank floor is estimated as the average height of features in region A. From
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depth (m) w/o terr. factors w/ terr. factors

A 1.708 ± 0.084 1.711 ± 0.028
B 1.539 ± 0.059 1.542 ± 0.024
C 1.558 ± 0.057 1.549 ± 0.026

Table 3.2: Depth with 1 standard deviation of three regions marked in Fig. 3.13a
without/with terrain factors. The height of the ramp peak at B/C is calculated by
the difference compared to ground A.

the result in Table I, we can see that height estimates have lower variance when

terrain factors are incorporated into the optimization, and the estimated height of

the ramps is slightly closer to the actual geometry (0.2 m). However, both algorithms

underestimate their true height, which may be caused by inaccurate calibration of

factors including sensor displacement and speed of sound.

3.5 Conclusions

We present two applications involving mapping using sonar in underwater environ-

ments. We employ Gaussian processes to produce rich inference using sparse sonar

measurements over unobserved gaps. But this application is limited to 2.5D envi-

ronments, assuming a planar sonar sensor model. For the second application using

a multi-beam imaging sonar for terrain mapping, we offer two improvements. First,

data association is performed via optical flow tracking, which is more robust to noise

and the absence of elevation angle. Second, a degenerate system is partly solved by

adding terrain constraints connecting feature pairs, constraining their height values

to be similar. The effectiveness of terrain factors is validated in both simulation and

experiment. Outliers among the resulting feature estimates are reduced, and thus GP

terrain maps are more accurate.

Looking ahead at areas for improvement, better initialization estimates can
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potentially be provided using the linear triangulation proposed in [55]. In addition,

the real-time viability of our SLAM framework is impeded by adding terrain factors,

since the construction of a CLT requires full knowledge of a feature’s 2D location.

This also introduces a large number of additional constraints into the factor graph,

making optimization computationally costly and challenging for real-time applications

on embedded platforms. Although the offline SLAM solution requires about 7 seconds

of computation on a laptop equipped with an Intel Core i7-4810MQ @ 2.80 Ghz × 8,

the setup of our current experiment, without loop closures, is idealistic. Future work

involves exploring its application at larger scales.



49

Chapter 4

Underwater SLAM and Data Association

4.1 Submerged Structures Mapping with a Single-Beam Scanning Sonar

In the section, we discuss an approach to performing 3D occupancy mapping while

treating sonar measurements in the same manner as a laser range-finder. Formally,

we let φ = 0, thus detected objects are on the zero-elevation imaging plane. We ap-

ply GPOctoMap presented above for mapping submerged structures using VideoRay

ROV (Fig. 4.1a) equipped with a single-beam scanning sonar (Tritech Micron). An

example of the scanning sonar return is illustrated in Fig. 4.2a, which is accumulated

from 8.5 seconds of measurements from a corrugated seawall. We first briefly describe

a processing pipeline that is applied to sonar images, to extract points that are likely

to represent true range returns from submerged structures, and a hierarchical clus-

tering method that subsequently divides the extracted points into features that are

used in feature-based SLAM. GPOctoMap is applied to the filtered sonar data after

the estimated trajectory is obtained.

4.1.1 Sonar Processing Pipeline

A sonar beam is composed of a sequence of intensity values, where a high intensity

typically represents a return from subsea terrain or a submerged structure, however

a number of factors may contribute to variations in signal intensity: changes in ma-

terial properties, the strength of the transmitted signal, receiver sensitivity, and the

distance to a target [4]. To address the limitations of applying a single threshold

throughout a scan when faced with variable intensities, we propose a cluster-based
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Figure 4.1: The VideoRay was commanded to incrementally dive while collecting
sonar scans. (a) VideoRay Pro4 ROV with a Tritech Micron scanning sonar. (b)
Transitions in depth during the course of two experiments at different locations.

adaptive thresholding technique. First, a conservatively high amplitude threshold is

applied to the entire image. The resulting points are subsequently clustered using the

density-based spatial clustering of applications with noise (DBSCAN) algorithm [71],

for which an appropriate number of clusters is designated automatically. Each cluster

is then filtered individually using an amplitude threshold selected locally, chosen to

be a designated number of standard deviations from the mean amplitude value within

each cluster. DBSCAN also facilitates outlier detection, as clusters containing very

few points can be eliminated from a filtered scan. A representative outcome of these

steps is depicted in Fig. 4.2b. The initial filtering result is represented with light

gray points, and the points remaining after adaptive thresholding on each cluster are

colored based on the cluster label.

However, points from two objects may sometimes be recognized as one cluster,

resulting in a substantial amount of connections, which is unfavorable for extracting

representative features. We address this problem by using the hierarchical clustering

methodology of ordering points to identfiy the clustering structure (OPTICS) [72].

OPTICS abandons the assumption that there exists a global parameter setting to
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describe the cluster structure, and exploits the varying density across clusters as the

criteria for ordering points to obtain a reachability plot. Automatic extraction of

clusters [73] follows, and a representative example of the result is shown in Fig. 4.2c.

−8 −6 −4 −2 0 2 4 6 8
X (m)

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

(a)

−8 −6 −4 −2 0 2 4 6 8
X (m)

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

(b)

−8 −6 −4 −2 0 2 4 6 8
X (m)

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

l0
l1

l2

l3

l4

l5

l6

l7

l8

l9
l10

l11

l12
l13 l14

l15 l16

l17

l18

xi=0 : 18

(c)

Figure 4.2: Representative results of the proposed sonar processing pipeline, applied
to data collected in close proximity to a corrugated seawall with three angled sec-
tions. (a) Colored intensities of one 360◦ sonar scan (lighter color represents stronger
intensity) with 200 beams that were collected within 8.5 seconds; the red line denotes
the beginning of the full scan. (b) Adaptive thresholding of filtered points (light
gray) locally within individual clusters, which are indicated using different colors. (c)
Factor graph with variable nodes, extracted point landmarks and robot poses.

4.1.2 SLAM with Scanning Sonar
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Figure 4.4: Misaligned points resulting from ICP registration among 10 full sonar
scans.
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Figure 4.3: Two experimental results using the proposed methodology: United States
Merchant Marine Academy, Hague Basin (left) and Hudson River Park, Pier 84
(right). Estimated trajectories and maps are overlaid with satellite images.

We next discuss the incremental SLAM approach that follows our extraction of fea-

tures from sonar scans. Considering the drift of a robot under currents, registration

methods which assume the robot holds a fixed position while collecting a 360◦ sonar

scan will perform poorly, as shown in Fig. 4.4. First we discuss the application of in-

cremental smoothing and mapping (iSAM2) [74] to provide an estimate of the robot’s

trajectory. Then, we discuss the front-end algorithms that address the problem of

data association.

It is of course desirable to produce estimates of a robot’s trajectory that are

consistent with the observation of landmarks. Loop-closure, when a robot sees objects

that it has seen before, may occur frequently as a sonar is scanning, and will introduce

constraints into the state estimation process linking landmarks and robot poses. Thus

we can determine the most likely map of observed landmarks by considering the many

possible pose histories of the vehicle.

Mathematically we adopt the SLAM problem as a smoothing problem on a

probabilistic graphical model, a factor graph. A factor graph is a bipartite graph

G = (F ,Θ,E ) comprised of two types of nodes, factor nodes and variable nodes.
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Landmarks li ∈ Θ and robot poses xi ∈ Θ are two kinds of variables nodes in the

SLAM problem (see Fig. 4.2c). A factor node, fi ∈ F , which derives from a landmark

measurement or from the process model

xi = gi(xi−1,ui) + w, w ∼ N (0,Λi), (4.1)

is a function of the variables in Θ. The relationships between factor nodes and

variables are defined in edges eij ∈ E . Following from the assumption that both the

measurement model and process model are Gaussian, a factor node can be formulated

from one observation as

fk(Θk = {xk, lk}) ∝ exp(−1

2
||hi(xk, lk)− zk||2Γk). (4.2)

or from one control cycle as

fi(Θi = {xi,xi−1}) ∝ exp(−1

2
||gi(xi−1,ui)− xi||2Λi), (4.3)

Generally, a factor graph defines the factorization of a function f(Θ) as

f(Θ) =
∏
i

fi(Θi). (4.4)

The objective is to find the optimal variables Θ∗ that maximize Eq. 4.4, which can
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Figure 4.5: A result of iterative data association via JCBB. Four possible landmark
pairings (dashed lines) are selected, then optimization on the factor graph is per-
formed to obtain estimates of the vehicle trajectory and landmark locations. Final
states of the vehicle are denoted by arrows.

be done through a nonlinear least-squares estimator

Θ∗ = argmax
Θ

f(Θ) = argmin
Θ
− log(f(Θ))

= argmin
Θ

∑
i

||gi(xi−1,ui)− xi||2Λi

+
∑
k

||hk(xk, lk)− zk||2Γk

(4.5)

We utilize the state-of-the-art SLAM algorithm iSAM2, which efficiently produces

online estimates of landmark locations and a robot’s trajectory as measurments are

gathered.
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4.1.3 Iterative Data Association

While the back-end of SLAM systems performs optimization on a factor graph, the

front-end is responsible for constructing the factor graph, in which searching for land-

mark correspondences after revisiting previously mapped areas is a key component.

The Individual Compatibility Nearest Neighbor (ICNN) algorithm [75] solves

the problem by matching each measurement with its gated nearest neighbor. Math-

ematically, a pair comprised of measurement zi and landmark lji is compatible, given

the landmark’s predicted measurement ẑji , if the following condition is satisfied,

d2
iji

= νTijiS
−1
iji
νiji < χ2

2,α, (4.6)

where νiji = zi − ẑji is the innovation, Siji is its covariance, and α is the confidence

level. However, the gated nearest neighbor approach ignores the fact that the in-

novations are correlated, and specifically that a set of pairings might not be jointly

compatible.

To overcome this limitation, we adopt Joint Compatibility Branch and Bound

(JCBB) [75] to verify a hypothesis of pairings. Similarly, the selection criterion is

expressed as

D2
Hi = hTHiS

−1
HihHi < χ2

d,α, (4.7)

where Hi = {j1, j2, ..., ji} represents the correspondences for each measurement in the

current batch (ji = 0 means an unseen landmark), hHi = [v1j1 , v2j2 , ..., viji ]
T is the

joint innovation, and d = dim(hHi). DHi is calculated for every hypothesis Hi that is

established by traversing the interpretation tree in order to find the jointly compatible

hypothesis with the most non-null pairings. The joint compatibility is monotonically

non-decreasing, and as a consequence, the search of the tree is bounded.
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Inspired by the iterative closest point (ICP) algorithm, we perform JCBB

iteratively, each step of which is followed by optimization on a factor graph with

constraints derived from the resulting data associations. These two interleaved steps

are repeated until the process converges, and no new associations are found. This

iterative process allows a larger number of jointly compatible correspondences to be

retrieved, which decreases the probability that a spurious pairing exists for a given

hypothesis [75]. Furthermore, a filtering procedure can be implemented to remove

dynamic obstacles or spurious measurements that are rarely seen among pairings.

In most feature-based SLAM systems, the sensor is capable of observing a set

of multiple landmarks simultaneously, in which case several landmarks may corre-

spond to the same robot pose. However, with a scanning sonar and strong currents, a

robot will sequentially observe landmarks such that each of them is associated with a

different pose. We allow a designated number of these recently observed landmarks to

remain “active” such that their associations can be changed. The outcome of one se-

quence of iterative data association is illustrated in Fig. 4.5. In this example, we wish

to match our five most recently observed features with existing landmarks. According

to ICNN, we will end up with the following pairings: the uppermost measurement li

is paired with the landmark l′j, and the other three remain the same. However, there

is high risk that the first pairing is incorrect, because of the inconsistent rotation as

a result of the first pairing and the others. In contrast, four pairings are established

through JCBB which are simultaneously acceptable. The locations of landmarks and

the trajectory of the vehicle are then corrected to maintain a consistent map.

4.1.4 Experiments on ROVs

Two experiments were carried out in cluttered shallow-water environments, using the

VideoRay Pro4 ROV equipped with a Tritech Micron scanning sonar (Fig. 4.1a):
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1) U.S. Merchant Marine Academy (USMMA) in King’s Point, NY, 2) Pier 84 in

Hudson River Park, NY. The ROV also has an accelerometer and compass onboard,

however these measurements were not utilized due to a prohibitive amount of noise,

especially the compass heading noise induced by interference from rotating thrusters.

We commanded the ROV to incrementally dive and hold a fixed heading while col-

lecting sonar data (Fig. 4.1b). In both experiments, we assumed the vehicle held a

fixed translational position during its navigation. Despite the lack of inputs to the

system, the vehicle exhibited a large amount of translational movement as a conse-

quence of disturbances from the tether, currents, and wind-induced waves. Therefore,

the objective is to recover the free movement of the ROV and to build a descriptive

3D map of its surrounding environments. The mapping results were overlaid with

satellite images from Google earth to demonstrate the performance in Fig. 4.3.

While the centroid of extracted clusters after OPTICS is used as features in

SLAM, points in clusters are treated as measurements from laser range-finder to

perform mapping using GPOctoMap. The resulting point clouds used to populate

3D occupancy maps are shown on the left in Fig. 4.6. A standard occupancy grid map

would remain quite sparse, containing many gaps that pose challenges for reasoning

about motion planning and collision avoidance. However, the sonar-derived point

cloud was used as training data for a GP regression in which the occupancy of the

full map contents was predicted. As shown in Figs. 4.6, GP occupancy maps leveraged

predictive inference to close gaps in many of the surrounding obstacles and produce

continuous 3D maps that might serve as a tool for further decision-making about

exploring these environments.
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Figure 4.6: Comparison of map results from raw point clouds (left), OctoMap (center)
and GP occupancy maps (right) using data collected at USMMA (top) and Pier 84
(bottom). The raw point clouds are visualized in the horizontal plane, from above,
and the occupancy maps are shown from an isometric view.

4.2 The Data Association Problem

4.2.1 Problem Definition

We first give the definition of data association that will be assumed throughout this

paper. A robot navigating throughout the environment repeatedly collects observa-

tions from a set of m features. Let {z1, ..., zm} be the set of measurements of the

landmarks {l1, ..., lm} at state x. The data association problem is to determine the

hypothesis H , {j1, ..., jm}, each of which associates one measurement zi with one

non-repeated landmark lji . A measurement from a new landmark, or a null-pairing,

is denoted as ji = 0. Subsequently, the back-end of SLAM updates the system’s

estimate of the robot state and landmark locations, incorporating this set of new

measurements.

The selection criterion is defined by the Mahalanobis distance between actual
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measurements and predicted measurements given a noisy observation model. Math-

ematically, the joint measurement model under hypothesis H is

zH = hH(x, lH) + v, (4.8)

where hH , [h1ji , ...,hmjm ]T is the collection of independent measurement models

with zero-mean Gaussian noise v ∼ N (0,RH), and lH , [l1j1 , ..., lmjm ]T is the tested

landmark vector corresponding to zH = {z1, ..., zm}. The distance d2
H is given by

eH = zH − hH(x̂, l̂H) (4.9)

CH = HHP̂HHT
H + RH (4.10)

d2
H = eTHC−1

H eH , (4.11)

where HH is the Jacobian matrix with respect to robot pose and landmark positions,

and P̂H is the joint covariance of the estimates. One set of pairings can be accepted,

or is jointly compatible, if the predicted measurements lie in the validation gate based

on the chi-squared distribution,

jc(H) if d2
H ≤ χ2

d,α, (4.12)

where d , dim(hH), and α is the confidence level.

4.2.2 Joint Compatibility Branch and Bound

In general, only one “optimal” solution is derived from data association algorithms,

and the problem is challenging due to the exponential growth of the interpretation tree

[76]. Therefore, obtaining the hypothesis with the minimum Mahalanobis distance is
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computationally intractable.

Joint compatibility branch and bound (JCBB) [75] instead searches for the

hypothesis which has the maximum number of non-null pairings N(H) =
∑m

i=1 Iji 6=0,

H∗ = argmax
H

N(H), s.t. jc(H). (4.13)

The underlying idea is that the probability of accepting a spurious pairing decreases as

we increase the number of jointly compatible non-null pairings. With this redefinition,

the combinatorial problem becomes tractable using a branch and bound algorithm.

While generating the interpretation tree, we obtain an incomplete hypothesis Hi ,

{j1, ..., ji<m} at every leaf. Given the best H∗ so far, the branching of a leaf, or

insertion of a new pairing Hi+1 = Hi∪{ji+1}, is bounded by the lower bound N(H∗).

More specifically, Hi+1 will be considered as a candidate only if N(Hi+1) > N(H∗) ∧

jc(Hi+1). The upper bound of the number of non-null pairings N can be estimated

by assuming all future independently compatible pairings are also jointly compatible.

Thus a good lower bound will significantly reduce the computation involved in the

compatibility check.

4.2.3 Multiple Hypothesis JCBB

The myopic pairings derived from JCBB can be inaccurate. For example, when faced

with the situation in the top left of Fig. 4.10, the solution that greedily incorporates

more pairings with existing landmarks will distort the robot’s state estimate. The

assumptions of JCBB are typically capable of rejecting false positive pairings with a

dense feature cloud, such as that from a camera image. However, these assumptions

do not hold when dealing with fewer features. In addition, errors can result from the

linearization of priors [77] and from the fact that maximum a posteriori estimation
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Figure 4.7: A simple example of MHJCBB. The left three panels visualize three
tracks resulting from ambiguous data associations after taking three observations
(from top to bottom). At each time instant, tracks diverge, taking into account
possible hypotheses. The formation and ordering of tracks are discussed in Sec. III.B.
Redundant hypotheses are screened and the resulting tracks are pruned to keep the
K-best solutions (Sec. III.C).

converges to local minima.

In this section, we introduce our proposed approach to addressing the limi-

tations of JCBB. Similar to multiple hypothesis tracking (MHT) [78], the key idea

is to defer decision-making about data association and ultimately to pick the asso-

ciation “track” with the maximum number of non-null pairings. Consequently, the

need for interpretation at a single ambiguous moment is avoided by accumulating

measurements over a longer time horizon.

Let T (t−1) be the hypothesis track associated with measurements Z(t−1) over

the trajectory X(t−1),

T (t−1) , {H1, ..., Ht−1},

Z(t−1) , {zH(1) , ..., zH(t−1)},

X(t−1) , {x1, ...,xt−1}.

Here, we use the superscript to indicate a time step and the subscript for indexing,

e.g., T
(j)
i means the ith track at time j. In the notation that follows, the superscript
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will occasionally be omitted for the sake of brevity.

We seek to resolve ambiguity by maintaining the K-best solutions of the data

association problem, which are represented as {T (t−1)
1 , ..., T

(t−1)
k≤K }. Given the latest

measurements, the goal is to correctly populate a compact set of the most probable

association histories {T (t)
k } after pruning. However, without intentionally planning to

eliminate ambiguity, there is no guarantee that all tracks will eventually be reduced

to one.

4.2.4 Hypothesis Orderings

A good measure is needed to select the K-best solutions, and a common approach is

to leverage the joint probability model [79], or the sum of residual error d2
T introduced

by measurement and odometry constraints in its logarithmic form [80],

d2
T =

∑
t

||ft(xt−1,ut−1)− xt||2Qt

+ ||hHt(xt, lHt)− zHt ||2RHt
,

where xt = ft(xt−1,ut) + w is the process model with zero-mean Gaussian noise

w ∼ N (0,Qt). Unlike d2
H , the posterior residual error d2

T associated with a track of

associations is computed after optimization.

However, a small d2
T doesn’t necessarily indicate a good mapping result, be-

cause the optimization may easily become trapped in local minima [81]. For instance,

consider two mapping results produced from the same trajectory (Fig. 4.8), using

JCBB and using known data associations respectively. The former result, which is

severely distorted, turns out to have a smaller posterior error. Additionally, a data

association algorithm that assumes all measurements to be from new landmarks can
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drive the d2
T error to zero.

Therefore, we propose two total orderings for intermediate hypothesis H and

association track T . After new measurements are introduced into the least-squares

problem, the first ordering is used for sorting association tracks. Inspired by the

objective function used in JCBB, an association track is measured in terms of the

total number of non-null pairings over the entire trajectory,

N(T ) =
∑
t

N(Ht). (4.14)

Thus, the tracks are sorted in the following way,

Ti < Tj ⇒ N(Ti) < N(Tj) ∨ (4.15)

N(Ti) = N(Tj) ∧ d2
Ti
> d2

Tj
.

By maximizing the overall non-null pairings, populating new landmarks is discour-

aged. However, tracks that have false associations are likely to diverge from the

correct trajectory, and so maintaining maximum non-null pairings is less probable.

In the example in Fig. 1, there are three tracks with N(T1) = 0 + 3 + 2, N(T2) =

0 + 2 + 2, N(T3) = 0 + 2 + 3.

Based on the above definition, we could follow the same search procedure as

in JCBB, using the lower bound computed by N(T ∗(t−1)) + N(H∗(t)), where H∗(t) is

generated from the track T ∗(t−1). However, if we consider a loop-closure observing

existing landmarks, true tracks with even smaller N(T ) will produce more non-null

pairings in the short-term. Thus, the second ordering is designed by valuing short-

term hypotheses, solely incorporating N(H).

The conventional JCBB method is used to search the interpretation forest con-
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sisting of interpretation trees rooted at multiple tracks. In the example shown in Fig.

1 at time t = 2, two hypotheses {H(2)
1 , H

(2)
2 = H

(2)
3 } from T1 are jointly compatible,

which consequently form two tracks {T (2)
1 , T

(2)
2 }. Similarly, at t = 3, one {H(3)

1 } from

T
(2)
1 and two {H(3)

2 , H
(3)
3 } from T

(2)
2 split into three tracks {T (3)

1 , T
(3)
2 , T

(3)
3 }. A priority

queue with maximum size K is maintained to house jointly compatible hypotheses

from any track that could be one of the K-best. The priority is defined using the

following total ordering:

Hi < Hj ⇒ N(Hi) < N(Hj) ∨ (4.16)

N(Hi) = N(Hj) ∧ d2
Hi
> d2

Hj
.

In this way, the last entry in the queue serves as the lower bound while traversing the

forest. A hypothesis will be inserted into the priority queue as long as it is superior

to the lower bound either in the number of non-null pairings or in the chi-squared

distance, both of which are non-decreasing with respect to node level. It is also worth

noting that until now we do not distinguish hypotheses from different association

tracks, thus the outcome is comprised of the i-th best Hki from association track Tk.

4.2.5 Hypothesis Elimination

Hypotheses and association tracks grow exponentially (due to the fact that we must

perform JCBB over K association tracks), so poor management of the various hy-

potheses will increase the computational burden, and more importantly, it will ne-

glect correct associations. This happens in situations where hypotheses with more

false positives have occupied the majority of spots in the priority queue, leaving no

space for correct hypotheses with more true negatives. Thus, we propose a number of

techniques to eliminate unlikely associations that fall into two categories: screening
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and pruning (similar to concepts in [82]).

Screening refers to eliminating unnecessary branches before generation. Sup-

pose a jointly compatible hypothesis is H = {j1 = 1, j2 = 2}. Then, there are three

trivial hypotheses that are also jointly compatible: {j1 = 1, j2 = 0}, {j1 = 0, j2 = 2},

and {j1 = 0, j2 = 0}, which become redundant if they result in little to no ambigu-

ity during the ensuing data association. Thus we formulate two screening rules by

examining the posterior estimate as follows:

delete Hki if Hki < Hkj

∧ ||x̂t,Hki − x̂t,Hkj)||2P < α1, (Rule 1)

delete Hi if N(Hi) = 0

∧ (∃k (N(Hkj) ≥ 1 ∧ ||x̂t,Hi − x̂t,Hkj ||2P < α1)), (Rule 2)

where x̂H is the updated pose estimate and P is the updated covariance estimate

from any of the two hypotheses. It is worth noting that in practice, we use an ex-

tended Kalman filter (EKF) update step to predict the posterior pose and covariance

estimates after incorporating a new hypothesis H, instead of performing the full least-

squares optimization that is applied elsewhere. The first rule selectively discards any

hypothesis that is close to a high-ranking hypothesis derived from the same associa-

tion track Tk, and the second rule ignores the all-null hypothesis if the posterior state

is in the proximity of any hypothesis with non-null pairings. Both rules restrain the

addition of new landmarks.

After the generation of hypotheses, pruning is used for the elimination of re-

dundant tracks, since all states are updated with new measurements. The rules are
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as follows:

delete Ti if d2
Ti

is an outlier ∨ d2
Ti
> α2, (Rule 3)

delete Ti if N(Tj)−N(Ti) > α3, (Rule 4)

delete Ti if Ti < Tj (Rule 5)

∧ (∀n ≤ t (||xn,Ti − xn,Tj ||2P < α4).

The third and fourth rules delete unlikely tracks with regard to the chi-squared error

and the number of landmarks that are observed at least twice. However, the fourth

pruning rule is not executed frequently, considering that the observation of existing

landmarks doesn’t occur until loop-closure (observing the same landmarks at consec-

utive poses usually will not eliminate ambiguity). Therefore, we consider tracks with

many new landmarks to be less probable after a certain number of re-observations

are performed. The fifth rule inspects the closeness of two estimated trajectories by

calculating the maximum Mahalanobis distance between two poses at every step, and

we consider the track of the highest order to represent the others in its close proximity.

4.2.6 Traversal Order

The branch and bound algorithm relies on the quick computation of lower bounds

such that suboptimal branches are not expanded. Typically, it is solved by using a

depth-first search (DFS) strategy to obtain one jointly compatible hypothesis at the

leaf node. However, in the context of multiple hypothesis data association, the K-

best solutions are generally distributed across different “track trees”. Thus exhaustive

traversal of a forest, tree by tree, is less efficient. In [83], a novel traversal strategy,

mixed stacked depth-breadth first (MSDBF) search, was proposed to speed up the

search for an optimal solution.
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Algorithm 2: MHJCBB

Result: Return best estimates X̂, L̂
1 Given measurements Z, priors T (1);

2 for {z(t)
i } do

3 Priority queue PQ← ∅ ordered by Eq. 4.16;

4 for MSDBF H
(t)
ki do

5 if H
(t)
ki > PQ.top() and jc(H) then

6 Delete or insert H
(t)
ki to PQ by rules 1-2;

7 end

8 end

9 for H
(t)
ki ∈ PQ do

10 Add {z(t)
i }, H

(t)
ki to T

(t)
k ;

11 Optimize states X̂
(t)

T
(t)
k

, L̂
(t)

T
(t)
k

;

12 Delete T
(t)
k by rules 3-5;

13 end

14 end

15 Return X̂
(t)

T
(t)
1

, L̂
(t)

T
(t)
1

with T
(t)
1 ordered by Eq. 4.15;

Firstly, a non-recursive traversal with stacks replaces function recursion. After

visiting the first leaf, instead of visiting its siblings, mixed depth-breadth visits the

first leaf traced back to the other children from the root by using a sequence of stacks

(see [83] for implementation details). In principle, leaves in a tree or in a forest

are explored in parallel. For example, two binary trees with two levels each will

have leaves {l11, l12, l13, l14, l21, l22, l23, l24}, which will be explored in MSDBF in the order

(l11, l
2
1, l

1
3, l

2
3, l

1
2, l

2
2, l

1
4, l

2
4). In this manner, the number of visited nodes is reduced, and

if the computation time is limited, stopping the search early has a less detrimental

effect on the outcome of MSDBF, as shown in the experiment to follow.

We describe the MHJCBB data association procedure as a whole in Algorithm

1. The process proceeds whenever new measurements arrive by populating association

hypotheses (the first inner loop) and appending them to current tracks (the second
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Max Nodes Noise: 1 2 3 4 5

30
DFS -0.03 +0.46 +0.39 +0.40 +0.59

MSDBF -0.04 +0.57 +0.16 +0.12 +0.39

50
DFS -0.02 +0.14 +0.20 +0.19 +0.43

MSDBF -0.04 +0.22 +0.18 +0.03 +0.24

70
DFS +0.03 -0.03 +0.06 +0.19 +0.33

MSDBF -0.03 +0.05 +0.15 +0.12 +0.24

Table 4.1: The increase/decrease in landmark error when limiting the max. number
of visited nodes is compared over different node limits using MHJCBB(K = 10)
(baselines without restricting visited nodes are set to zero). Mixed depth-breadth
first search generally obtains optimal hypotheses faster than depth first search.

inner loop). The MSDBF search is used to iterate over leaves in the interpretation

tree rooted at its corresponding track, and the search is bounded by the least optimal

case in PQ using hypothesis ordering 4.16 (or it ignores the bound if PQ hasn’t reach

its capacity). Given a jointly compatible hypothesis, Rules 1-2 are used to determine

whether it will result in uncertain state estimation. Hypothesis generation is followed

by optimization of the entire trajectory and map using a smoothing and mapping

method, and unnecessary tracks are removed following Rules 3-5. The algorithm

outputs an estimate selected from the remaining tracks using “track ordering” per

Equation 4.15.

4.2.7 SLAM Over a Predefined Trajectory

Our simulation of a predefined trajectory employs an environment with 60 uniformly

distributed random point features (Fig. 4.8). The robot is equipped with a sensor

with a limited field of view (5m, 120◦) that is capable of measuring the relative range

and bearing to a landmark. Zero mean Gaussian noise is added to both process

and measurement models. The robot is commanded to travel in four square patterns

(15m×15m). To demonstrate association error, we gradually multiplied the standard
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deviation (0.05◦ for rotation and bearing measurement, 0.05m for translation and

range measurement) by factors of 1, 2, 3, 4, 5 (this factor is the “noise level” plotted

along the x-axes of Fig. 2). All methods included 50 trials with different random

seeds.

The outcomes across one representative trial are illustrated in Fig. 4.8. JCBB

generates a misleading map as a result of a few incorrect data associations, whereas

by using MHJCBB, tracks diverge when ambiguity occurs and converge to one track

as soon as the robot observes enough existing landmarks. The average performance is

shown in Fig. 4.9 by analyzing root-mean-square error with respect to true landmark

positions. Given a mapping from ground truth to landmark estimates (li → zj → l̂k),

we define L̂(li) = {̂lk|li → · → l̂k} to be the set of estimates corresponding to the

same landmark. Then we calculate the error as follows,

RMSE(L̂) =

√
1

|L|
∑
li∈L

MSE(li) (4.17)

MSE(li) =
1

|L̂(li)|

∑
l̂k∈L̂(li)

||li − l̂k||22. (4.18)

It is clear that landmark error rises dramatically as we increase the noise level,

and our proposed method recovers accurate landmark positions under high uncer-

tainty. However, although allowing more estimation tracks improves performance,

especially in extremely uncertain environments, the performance drop compared with

SLAM under perfect knowledge of data association is still substantial. This can be

explained by the fact that the error introduced by an incorrect pairing is exacer-

bated by increased noise, thus more hypotheses even with false positive pairings are

considered jointly compatible. Consequently, even if we increase the quantity of hy-

potheses, the subtle differences in the posterior error makes the hypothesis pruning
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process error-prone.

In addition, we show the number of visited nodes in the interpretation forest

during the entire trajectory, along with all independently and jointly compatible

nodes, in Fig. 4.9(b). As mentioned above, the numbers of visited nodes along with

jointly compatible nodes undergo an approximately linear increase as the noise level

increases. However, the required computation is still demanding in contrast to single

hypothesis JCBB, which visits fewer than 250 nodes (this JCBB visit count is not

shown in Fig. 2 due to the scaling of the plot). Mixed depth-breadth first search aids

MHJCBB by reducing the number of joint compatibility checks required. Further

investigation shows that when limiting the maximum number of nodes the search is

allowed to visit, using MSDBF search to spread out visited leaves among multiple

interpretation trees yields less accuracy loss, as shown in Table 1.
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(a) JCBB: d2T = 287.36
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(b) Perfect DA: d2T = 298.88
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(c) MHJCBB(K = 5): Step 43
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(d) MHJCBB(K = 5): d2T = 291.04

Figure 4.8: Mapping examples in a simulated environment (noise level = 4) using
(a) JCBB, (b) known data associations, and (c-d) MHJCBB(K = 5). JCBB distorts
the trajectory but iSAM2 reports a relatively small error. Tracks using MHJCBB
diverge when the robot revisits its start location, but they converge to the optimal
trajectory after collecting enough observations. Black: ground truth, green: mul-
tiple estimated trajectories, blue: multiple estimated landmarks and error ellipses
(2 std. deviations). Darker-colored trajectories and landmarks in (c) indicate the
favored hypotheses.
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Figure 4.9: Mean landmark error and interpretation forest node counts (using
MHJCBB(10)) are plotted with respect to the noise level over 50 trials of the ex-
ample shown in Fig. 4.8 with randomized landmark locations. MHJCBB effectively
manages errors at low noise levels, and MSDBF reduces the number of forest nodes
visited (IC: total independently compatible node count, JC: total jointly compatible
node count, Visited: nodes actually visited during the search).
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Figure 4.10: Four representative steps from EM exploration using our proposed
MHJCBB(K = 5) algorithm. The estimated trajectories (lines) and maps (crosses)
correspond to the four instants along the robot’s trajectory that are marked in the
plot at bottom, which shows the evolving number of tracks.
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Figure 4.11: Snapshots at the same travel distances shown in Fig. 4.10 are now shown
using a single-hypothesis JCBB algorithm to support EM exploration. In the first
panel, an erroneous association with an existing landmark corrupts state estimation,
and hinders the subsequent exploration process.
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Figure 4.12: Results showing landmark errors and robot pose errors with respect to
distance traveled over 50 trials of EM exploration. Errors accumulate as the robot
explores using JCBB, and in contrast, MHJCBB with different maximum numbers
of hypotheses (K = 3, 5, 10) produces comparable results to the trials with perfect
knowledge of landmark associations.
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Chapter 5

Autonomous Exploration in Virtual Maps on UGVs

We address the problem of autonomous exploration for a range-sensing mobile robot

in an initially unknown environment. Our robot performs SLAM and constructs an

occupancy grid map as it explores. We assume a bounded 2D space V ⊂ R2 where

all discretized cells mi are initialized as unknown P (mi = 1) = 0.5. A frontier is

defined as the boundary where free space meets unmapped space. The exploration

is considered complete if no frontier can be detected. However, highly uncertain

poses are likely to result in complete, yet inaccurate occupancy grid maps, limiting

the usefulness of information gained by exploring unknown space. Assuming the

environment contains individual landmarks L = {lk}, apart from discovering more

landmarks, minimizing the estimation error is equally crucial.

5.1 EM Exploration

Let L = {li} be the set of landmarks in the environment. We have an estimate for

each of them li ∈ R2, which is distributed as N (̂li,Σli). Naturally, an exploration

strategy considering mapping uncertainty has the definition of the utility function as

follows,

U =
∑
li∈L

φ(Σli), (5.1)

where φ : Σ → R represents the uncertainty criterion for covariance matrices. In

addition to the uncertainty of landmarks, it is beneficial to add a cost-to-go C(a) to

favor a shorter path [84]. Thus the optimal action sequence is the one minimizing the
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uncertainty with a weighted smaller cost:

a∗ = argmin
a

U + αC. (5.2)

Since there are landmarks that haven’t been observed yet, in most works,

the common strategy is to omit the values of unknown landmarks and replace them

with the entropy of occupancy grid maps. In this paper, we introduce the concept

of virtual landmarks and treat the landmarks as latent variables. The objective is

then to minimize the uncertainty of possible landmarks that would be observed when

following the planned path. This uncertainty is defined

U ≈
∑
vk∈V

φ(Σvk), (5.3)

where V = {vk} are virtual landmarks, which represent all the possible locations of

actual landmarks. They won’t be incorporated into a robot’s SLAM optimization

unless they are revealed to be true landmarks, but the potential to reduce their un-

certainty is considered throughout the course of autonomous exploration. Intuitively,

the approximation computes the expected uncertainty of actual landmarks after tak-

ing into account the observations collected while following a candidate path. The

function provides a trade-off between exploration and localization internally: explo-

ration will decrease the uncertainty of virtual landmarks, which are initialized to have

large covariance matrices, but poor-quality localization will lead to higher cost, since

the covariance matrices of landmarks are estimated based on the robot poses that

can observe them.

In the formulation of the SLAM problem as a belief net [80], the solution is
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obtained by maximizing the joint probability distribution,

X∗, L∗ = argmax
X,L

logP (X,L, Z), (5.4)

where X,L, Z are robot poses, landmarks, and measurements respectively. During

exploration, we are confronted with unknown landmarks that haven’t been observed

yet. Therefore, we introduce the concept of virtual landmarks V as latent variables,

which describe potential landmark positions that would be observed when following

the planned path. Then the objective is to maximize the following marginal model,

X∗ = argmax
X

logP (X,Z)

= argmax
X

log
∑
V

P (X,Z, V ).
(5.5)

The above equation involves unobserved variables, which can be approached

intuitively using an expectation-maximization (EM) algorithm as follows,

E-step: q(V ) = p(V |Xold, Z) (5.6)

M-step: Xnew = arg max
X

Eq(V )[logP (X, V, Z)]. (5.7)

In the E-step, latent virtual landmarks are computed based on the current estimate

of the trajectory and the history of measurements. In the M-step, a new trajectory is

selected such that the expected value of joint probability, given the virtual landmark

distributions, is maximized. The iterative algorithm alternates between the E-step

and M-step, but each iteration is accomplished by the execution of actions and the

collection of measurements.

The equation above poses a challenge for efficient solution due to the exponen-
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tial growth of potential virtual landmark configurations with respect to the number of

virtual landmarks. Inspired by classification EM algorithms, an alternative solution

would add a classification step (C-step) before the M-step to provide the maximum

posterior probability estimate of the virtual landmark distributions,

C-step: V ∗ = argmax
V

p(V |Xold, Z) (5.8)

M-step: Xnew = arg max
X

logP (X, V ∗, Z). (5.9)

If we further assume measurements are assigned to maximize the likelihood

Z = argmax
Z

h(X, V ),

then the joint distribution can be expressed as a multivariate Gaussian centered at

the proposed poses and landmark positions, and the covariance can be approximated

by the information matrix inverse,

P (X, V, Z) ∼ N
(X

V

 ,
ΣXX ΣXV

ΣV X ΣV V

). (5.10)

The solution of Eq. 5.9 is equivalent to evaluating the log-determinant of the covari-

ance matrix,

argmax
X

logP (X, V ∗, Z) = argmin
X

log det(Σ). (5.11)

This implies that the performance metric for our proposed exploration is consistent

with the D-optimality criterion in active SLAM [85], except that the subjects consid-

ered include unobserved landmarks.

Since we are more interested in the uncertainty of the virtual landmarks and
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the most recent pose xT+N at step T with planning horizon N , we can marginalize

out irrelevant poses in ΣXX , ending up with ΣxT+N
. Typically, there exist thousands

of virtual landmarks, thus approximation of ΣV V is critical for real-time applica-

tions. Combined with pose simplification, we can obtain that, for a positive definite

covariance matrix,

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σvk), (5.12)

where ΣVk is the diagonal block involving the kth virtual landmark in ΣV V . This

approximation is reasonable considering an overestimate of information using the

introduced virtual landmarks (see Sec. 5.3.1).

In the next two sections, we show an approximative estimate of Σvk . The

computation is illustrated in Figure 5.1. At the beginning, existing pose estimate

and covariance (top left) can be obtained from SLAM, and candidate actions (top

right) are generated from path library which will be discussed later. First, given one

candidate path and predicted measurements, the covaraince of poses in the entire

trajecotyr is updated, i.e., Σx1:T+N
(bottom left). Second, provided the predicted

pose uncertainty, we approximate the covariance of virtual landmarks independently

without the full pose covariance matrix (bottom right).

5.1.1 Belief Propagation on Candidate Actions

The SLAM problem defined in Equation 2.6 can be approximated by performing

linearization and solved by iteration through the linear form given by

δ∗ = argmin
δ

1

2
‖Aδ − b‖2, (5.13)
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Figure 5.1: Belief propagation of candidate actions and virtual landmarks in EM-
exploration.

where the matrix A represents Jacobian matrix and the vector b represents mea-

surement residuals. The incremental update δ in the above equation is obtained by

solving the linear system,

A>Aδ = A>b. (5.14)

It can also be formulated as Λδ = η where Λ = A>A is refered as information matrix.

In general, the covariance matrix is obtained as the inverse of the information matrix

Σ = Λ−1 = (A>A)−1. (5.15)

As shown in [86], the recovery of block-diagonal entries corresponding to pose

covariances can be implemented efficiently. As a result, we only concern the problem

of updating uncertainty upon new measurements assumping Σxi are given. Figure 5.1

shows a scenerio (from top right to lower left) where belief about current trajectory has
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been obtained (black) and updates (red) are to be investigated if new measurements

are available.

The covariance recovery can be performed in three steps. We use Figure 5.1 and

Equation 5.19 as an example, where k is the most recent pose. First, we calculate

disgonal entries in the covariance matrix (blue). Second, we ignore loop closure

measurements and propogate covariance using only odometry measurements which

could be from wheel odometry or sequential scan matching. The open-loop covariance

recovery is given by

Σxi,k+t = Σxi,k+bauschbiott−1
F>k+t, (5.16)

where Fk+t = ∂fk+t
∂xk+t

is the Jacobian matrix of fk+t with respect to pose xxi,k−1
. The

equation is applied recursively and the initial value Σxi,k can be calculated by

ΛΣx·,k = Ik, RΣx·,k = R>Ik (5.17)

where Σx·,k represents the cross-covariance between poses and current pose (green

column k) and Ik is a sparse block column matrix with an identity block only at

the position corresponding to pose k. The solution of Equation5.17 is obtained by

Cholesky decomposition on the right (the R is available immedidately after incremen-

tal update in iSAM2 [74]), whose computational complexity, for sparse R with Nnz

nonzero elements, is O(Nnz).

Finally, we use Woodbury formula to update covariance matrix as shown in

Figure 5.2 [87],

Σ′ = Σ + ∆Σ,∆Σ = −ΣA>u (I + AuΣA
>
u )−1AuΣ, (5.18)
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Figure 5.2: Efficient calculation of pose covariance on candidate actions.

where Au is Jacobian matrix with each block row corresponding to one loop closure

measurement. Using the above formula results in a much efficient update as it avoids

to invert a large dense matrix (A>A + A>uAu)
−1. What we need involves recovering

block column if the pose apprears in the measurements (green column i) and a matrix

inversion of a relatively small matrix with the number of block row equal to the

number of loop closure measurements.



Σx0 Σx0i
Σx0k

· · · Σx0,k+n

. . .
...

... . . .
...

Σxi Σxik . . . Σxi,k+n

. . .
... . . .

...

Σxj Σxjk . . . Σxj,k+n

. . .
... . . .

...

Σxk . . . Σxk,k+n

. . .
...

Σxk+n



(5.19)

5.1.2 Belief Propagation on Virtual Landmarks

Assume the robot following a certain path is able to take measurements from land-

marks in the surrounding environment. Let {xi ∈ SE(2)} be the robot poses that

observe the same landmark l ∈ R2. In the following derivation we don’t distinguish



84

−2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

x0

l

−2 0 2 4 6 8 10

x0

x1

l

−2 0 2 4 6 8 10

x0

x1 x2

l

−2 0 2 4 6 8 10

x0

x1 x2

x3

l

Figure 5.3: Covariance intersection is used to compute an upper bound (red ellipses)
of the actual landmark covariance (green ellipses). Samples from the variable repre-
senting nearest neighbor are indicated as blue dots.

between virtual landmark v and actual landmark l. The measurement zi can be

obtained from the following sensor model

zi = z̃i + vi = hi(xi, l) + vi, vi ∼ N (0,Ri). (5.20)

We further assume that the sensor model is invertible, i.e., we are able to

predict landmark position given robot pose and measurement. Mathematically, the

Jacobian matrix has full rank, rank(∂hi
∂l

) = 2. One example of such models is bearing-

range measurement which is commonly used in sonars and laser range-finders. In the

following, we will use the inverse sensor model for convenience,

l = h−1
i (xi, z̃i) = h−1

i (xi, zi − vi), vi ∼ N (0,Ri). (5.21)

The Jacobian matrices of the inverse sensor model are represented as H =

∂h−1

∂x
,G = ∂h−1

∂z̃
. Given the covariance matrices of poses {Σi|Σi � 0}, we intend to

provide a consistent estimate of the landmark’s covariance without the computation

of {Σij|i 6= j} as demonstrated in the bottom right in Figure 5.1.

Suppose we obtain two measurements of the same landmark at two distinct

poses xi,xj, resulting in a joint distribution
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li

lj

 =

h−1(xi, zi)

h−1(xj, zj)

 . (5.22)

cov
(li

lj

) =

 Σl
i Σl

ij

Σl>
ij Σl

j


=

Hi 0

0 Hj


Σi Σij

Σ>ij Σj


Hi 0

0 Hj


>

+

Gi 0

0 Gj


Ri 0

0 Rj


Gi 0

0 Gj


>

Let Pi1 = HiΣiH
>
i � 0,Pi2 = GiRiG

>
i � 0,Pij = HiΣijH

>
j .

cov
(li

lj

) =

 Σl
i Σl

ij

Σl>
ij Σl

j

 =

Pi1 + Pi2 Pij

P>ij Pj1 + Pj2


We obtain two covariance estimates independently from two poses and we will use

split covariance intersection (SCI) [88] to calculate an upper bound of the actual

landmark covariance as follows

Σ̂l = (
1

ω
Pi1 + Pi2)−1 + (

1

1− ω
Pj1 + Pj2)−1, ω ∈ [0, 1], (5.23)

where ω can be optimized via

ω∗ = argmin
ω∈(0,1)

det(Σ̂l). (5.24)
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Readers are refered to [88] for proof of SCI. But the core idea is that if we construct

an optimal linear, unbiased estimator l̂ = Kili + Kjlj(Ki + Kj = I) and it can be

proved that Σ̂l � E[(̂l − l)(̂l − l)>]. Therefore we are able to further approximate

Equation 5.12 by

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σ̂vk). (5.25)

We demonstrate the process of incremental split covariane intersection in Fig-

ure 5.3. At each step a covariance estimate calculated from the measurement at this

specific step is indicated as dark blue ellipse. After the first step, we are able to fuse

them using covariance intersection using Equation 5.23 as shown in red ellipses. It’s

evident that the resulted ellipsoid (red) contains that from SLAM (green).

From the above derivation an upper bound of a (virtual) landmark is calcu-

lated. However it’s worth investigating its meaning in the context of a pose SLAM

where no landmark is incorporated into optimization. To simplify the problem, we

assume feature ponts are measured and constraints between poses are constructed

through iterative closest point. Thus the projection of measurements is exactly the

same as that in the landmark scenario and each projected feature point is distributed

as a Gaussian centered as the actual location. We visualize its distribution using

samples in the leftmost plot in Figure 5.3. In ICP, a point is associated to its nearest

neighbor and the matched feature is given by

l̃ = argmin
li

‖li − l‖2. (5.26)

Now it’s trivial to show that

Σl � E[(̂l− l)(̂l− l)>] � E[(̃l− l)(̃l− l)>]. (5.27)
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The distribution of l̃ is visualized at every step in Figure 5.3. While it’s expected to

minimize the (virtual) landmark covariance after taking an action in landmark-based

SLAM, we essentially minimize the closeness of measurements in ICP-based pose

SLAM. Because association error is one major cause of ICP error, tightly clustered

target points greatly contribute to registration performance.

5.2 Segmant-aided SLAM

Although our EM exploration algorithm does not rely on any specific SLAM frame-

work, a fundamental requirement is the need to predict the resulting uncertainty of

future robot poses if a sequence of sensing actions is executed. Typically during explo-

ration, loop closure constraints, such as the re-observation of a landmark, are desired

with some regularity for better localization. However, not all real-world exploration

problems can reason scalably about individual landmarks. Thus we propose to use

segment-aided LiDAR mapping [89] to support decision-making in exploration, which

optimizes a pose graph but is capable of detecting and handling re-observation as in

landmark-based SLAM. In this section, we first present the segment-aided SLAM

framework, then in the next sections, we elaborate the implementation of proposed

EM exploration algorithm.

The diagram of our proposed SLAM system is shown in Fig. 5.4. The backbone

of the pose graph is composed of two sequential factors. The odometry factor (fO)

defines the relative motion constraint between two consecutive poses from persistent

odometry measurements. Besides odometry, when the robot is equipped with a 3D

LiDAR, sequential scan matching (fSSM) also provides a relative transformation by

aligning point clouds observed at two positions. The essential component of graph

SLAM to ensure accurate estimation is loop closure, which is incorporated in two
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Figure 5.4: Overview of the segment-aided LiDAR mapping used for exploration. The
factor graph includes sequential factors from odometry (green) and sequential scan
matching (blue), and place recognition factors from segment matching (orange) and
pose matching (cyan).

ways. First, when the current position of the robot is in the vicinity of a previously

visited position, pose matching (fPM) is performed by matching two point clouds

accumulated around these two positions. Secondly, segment matching (fSM) is utilized

for loop-closure, and details on segmentation and segment association are elaborated

below. Overall, the factor graph can be expressed as

f(Θ) = f0(Θ0)
∏
i

fO
i (Θi)

∏
j

fSSM
j (Θj) (sequential)

∏
p

fPM
p (Θp)

∏
q

fSM
q (Θq), (loop closures)

where variables Θ contain 6-DOF robot poses, and every factor fi(Θi) defines a

constraint model on a set of variables Θi. The optimization of a factor graph leads

to a nonlinear least-squares problem, which can be solved efficiently using iSAM2
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(a) Colored by height (b) Colored by segment

Figure 5.5: A segmented point cloud after ground removal.

[74]. Sequential scan matching is performed using the iterative closest point (ICP)

algorithm.

ICP-based scan matching can easily get trapped in local minima, which results

in erroneous sequential scan matching factors and loop-closure factors. To improve

the robustness, we discard some scan matching results when the point cloud after

ground removal has too few points to obtain a reliable transformation. Furthermore,

an M-Estimator, specifically a Cauchy function, is applied to factors involving ICP

in order to alleviate the consequences of erroneous constraints.

The segmentation and matching scheme follows SegMatch as proposed in [90],

with some minor adjustments. We first remove the ground in a point cloud by fit-

ting a plane using points appearing near ground level with the knowledge of sensor

displacement and orientation. Euclidean cluster extraction is then performed on non-

ground points on the i-th time-step to divide the points into clusters {Ci
1, C

i
2, ...}, and

a voxel grid is constructed from each cluster denoted as v(C). Two clusters detected
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(a) No place recognition (b) Add SM and PM

Figure 5.6: Segment-aided LiDAR mapping. The ground truth trajectory (green) is
obtained via LeGO-LOAM [91] using a full-range (100m) LiDAR point cloud, while
our estimated trajectory (blue) relies on points with a 3m cutoff distance. The drift
is corrected by adding segment matching (two lines with the same color connecting
pose and segment), and pose matching (red lines connecting two poses).

in sequential frames are considered to be parts of the same segment when their corre-

sponding voxel grids overlap by a certain number of voxels, or v(Ci)∩v(Ci+1) > vthresh.

Let Ci
j be the cluster in the j-th segment observed at the i-th time-step, then a com-

plete segment can be represented as Sj = {Ci
j, C

i+1
j , ..., C

i+Nj
j }, and all cluster points

are anchored at the first step i given relative pose information via state estimation.

Fig. 5.5 demonstrates a scene showing a segmented point cloud.

Feature descriptors (e.g., Ensemble of Shape Functions (ESF)) computed on a

segment’s point cloud provide one approach to determining if two segments are from

the same object. Similarly, if we assume our state estimation has limited drift in an

indoor environment, associated segments are likely to be spatially close to each other.

Thus, Sj and Sk are matched by sequentially verifying the following distances (1)

∆c = |c(Sj) − c(Sk)| where c(S) is the segment centroid, (2) ∆f = |f(Sj) − f(Sk)|
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Figure 5.7: System overview of our proposed EM-exploration algorithm.

where f is a feature descriptor vector, and (3) ∆v = v(Sj) ∩ v(Sk) where the voxel

grid v is constructed using the entire cluster of points in a segment. A successful

segment matching results in a SM factor describing point cloud registration over two

segments. An example is given in Fig. 5.4: two segments, blue and red are tracked

at poses x1 – x2 and x6 – x7 respectively, and segment matching produces a factor

connecting x1 and x6.

5.3 Implementation Details

In this section, we present an implementation of the proposed EM exploration algo-

rithm. The system architecture is illustrated in Fig. 5.7, and each module contribut-

ing to exploration is elaborated in the following subsections.

5.3.1 Virtual Map

How can we predict unobserved landmarks without prior knowledge of the character-

istics of an environment? We can approach this question by making a conservative

assumption that any location which hasn’t been mapped yet has a virtual landmark.
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Figure 5.8: Virtual landmarks, shown as grid cells with 0.5m resolution. Their un-
certainty (measured by covariance log-determinant) is reduced after closing a loop.
Unmapped virtual landmarks (gray) have large initial uncertainty outside the spec-
trum of values depicted.

Therefore, the probability that a location is potentially occupied with a landmark is

strongly related to the traditional occupancy grid map. Let P (mi) denote the oc-

cupancy of a discretized cell, then we define a virtual map V consisting of virtual

landmarks with probability

P (vi = 1) =


1, if P (mi = 1) ≥ 0.5

0, otherwise.

(5.28)

Under circumstances with severe drift, the expected map could be utilized to calculate

a weighted average of occupancy grid maps from all trajectory hypotheses, as in our

previous work [17]. In Fig. 5.8, we whiten the grid cells that, once observed, no

longer possess virtual landmarks.

In its definition, existing landmarks have been incorporated into the virtual

map, which is essential because minimizing the uncertainty of observed landmarks

is also desired. What distinguishes an occupancy grid map from the virtual map

is the treatment of unknown space, which consequentially determines what metric
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(a) Localization cost λl(x) (b) Exploration cost λe(x) (c) Alternative paths

Figure 5.9: Alternative paths to a destination are generated from the shortest path on
a variety of cost maps by varying weights in a weighted sum of distance, localization
and exploration cost. In (c), the alternative paths to a single frontier location are
visualized in blue for clarity. Potential segment matching and pose matching are
denoted by green lines.

we use for exploration. In occupancy grid mapping, in order to enable exploration

towards unknown space, Shannon entropy is typically leveraged to optimize a path

that provides maximum information gain. However, another metric, such as an opti-

mality criterion defined over the covariance matrix, is required to take into account

mapping and localization uncertainty. In contrast, virtual landmarks are initialized

to have high uncertainty, which is reduced by taking measurements of them, result-

ing in remarkable information gain. The same metric can be further optimized by

improving localization through loop closures, thus unifying the utility measure used

in both exploration and localization.

5.3.2 Path Generation

In the M-step, given the distribution of virtual landmarks, path candidates are gener-

ated and evaluated using our proposed utility function (Sec. 5.3.5). The global paths

that are to be followed over a long span of time must take into account two types

of actions, exploration and place-revisiting [84]. Exploration actions normally have

destinations near frontier locations where mapped cells meet unknown cells, and to

reduce localization uncertainty, place-revisiting actions travel back to locations the
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robot has visited, or where it’s able to observe a previously observed map segment.

The prevalence of these locations requires us to examine a large number of free grid

cells in order to obtain a near-optimal solution.

Therefore, we break the path generation problem into two steps. First, frontiers

that are reachable from the robot’s current location are identified as destinations of

our path primitives. Next, we refine the path to a frontier location instead of taking

the shortest one using multi-objective optimization for path planning. Let d(xi,xj) be

the distance cost between two poses, let doccupied(x), dobserved(x) be the distance costs

from a pose to the nearest occupied cell and nearest observed cell respectively, and let

rsensor be the maximum sensor range. Then we define (1) the cost for localization as

λl(xj)d(xi,xj) where λl(xj) = 1−exp(−aldoccupied/rsensor), and (2) the cost to explore

as λe(xj)d(xi,xj) where λe(xj) = exp(−aedobserved/rsensor). The cost maps favoring

localization and exploration are illustrated in Figs. 5.9a and 5.9b.

At current step T , we wish to find a path that minimizes the following weighted

sum,
N∑
i=1

(
w0 + wlλl(xT+i) + weλe(xT+i)

)
d(xT+i−1,xT+i), (5.29)

where w0 is added to allow distance to dominate the cost when the other two terms

are close to zero. Considering there is no single optimal path for the above objective

function, we employ a simple weighted sum approach to explore Pareto optimal solu-

tions [92], by varying weights wl ∈ [0, 1], we = 1−wl and leaving w0 as constant. The

resulting paths are further pruned to retain only those that are well-separated. We

build a roadmap in the collision-free configuration space, and Dijkstra’s algorithm is

used to search for the shortest path with different cost functions. A representative

example is shown in Fig. 5.9c, and it’s evident that a few detoured paths are gener-

ated to explore unknown space, and to re-observe one map segment and acquire pose



95

matching (green lines).

5.3.3 Place Recognition

The place recognition module is designed to achieve accurate prediction of both pose

matching factors {f̃PM
p } and segment matching factors {f̃SM

q } given a predefined tra-

jectory. While predicted pose matching occurs in the same manner as in real SLAM,

we don’t resolve segment matching by predicting LiDAR measurements using a tradi-

tional ray-casting algorithm on a voxel grid associated with a segment v(S). Instead,

we approximate the measurement by performing a range search on the entire set of

points in a segment, and if we are able to gather enough points within sensor range,

we are confident that a cluster will be extracted from this segment. The predicted

matching is also validated by subsequent poses, and a segment matching factor will

be accepted if the process is successful without interruption following a designated

number of sequential poses.

5.3.4 Belief Propagation

Belief propagation is concerned with evaluation of Eq. 5.25 given future sequential

odometry factors {f̃O
i }, and more importantly, loop closure candidates from place

recognition {f̃PM
p }, {f̃SM

q }. Pose covariance recovery follows a standard update of

iSAM2, and we use Σ̃xi to denote the covariance estimate after incorporating pre-

dicted future factors. Clearly, the segment-aided mapping framework doesn’t pos-

sess landmarks, so we create an imaginary inverse sensor model vk = h−1(xi, zik)

that is able to compute the state of a virtual landmark from measurement z that

is corrupted by zero-mean Gaussian noise with covariance Λ. The predicted er-

ror covariance for the kth virtual landmark from a measurement at the ith pose

is Σ
(i)
vk = AikΣ̃xiA

i
k
T

+Bik
k ΛBik

k

T
, and Aik, B

ik
k are Jacobian matrices of the inverse sen-
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sor model with respect to pose and landmark. Eventually, we obtain Σ̂vk by fusing

all individual estimates from poses that can observe the kth landmark using SCI in

Eq. 5.23. Unobserved andmarks will still have large initial covariance. We illustrate

the uncertainty reduction due to loop closure in Fig. 5.8.

5.3.5 Utility Evaluation

As discussed in Sec.5.3.2, a variety of candidate paths are generated and we select the

best one among them according to a utility function that maps a path to a scalar. In

Eq.5.12, the log-determinant of the covariance matrix is derived from the M-step as

the uncertainty metric. Since the estimated covariance has to be fused with a large

initial covariance, the log-determinant, or D-optimality, is guaranteed to be mono-

tonically non-increasing during the exploration process, which is consistent with the

conclusion in [93]. In addition to uncertainty criteria, it is valuable to incorporate a

cost-to-go term to establish a trade-off between traveling cost and uncertainty reduc-

tion [84]. Thus, our utility is finalized as,

UEM(XT :T+N) =− log det(Σ̃xT+N
)−

∑
k

log det(Σ̂vk)

− αd(XT :T+N), (5.30)

where α is the weight on path distance d(XT :T+N). In our experiments, we adopt a

linearly decaying weight function with respect to traveled distance, whose parameters

are determined experimentally and applied consistently throughout our algorithm

comparisons below. The selected path is executed immediately, but to account for

deviation from the nominal trajectory during execution and inaccurate prediction

after taking new measurements, the path is discarded when it’s blocked by obstacles
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or the robot has traveled a designated distance. The exploration planning process is

repeated until no frontier is detected.

5.4 2D Experiments in Simulations
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Figure 5.12: Gaussian error ellipses (0.5 standard deviations) of virtual landmarks.
Left: The uncertainty of virtual landmarks at the bottom of the map isn’t reduced
significantly after exploration, as the robot hasn’t met a loop-closure, which means
the possible landmarks observed in the future would have high uncertainty. The
proposed algorithm makes a decision to travel upwards in order to revisit a landmark
for better localization. Right: The execution leads to an accurate estimate of the
trajectory, and the error ellipses of virtual landmarks shrink significantly.

Table 5.1: Simulation Parameters

Bearing: stddev (deg) 0.5 Translational speed (m/s) [0.5,1.0]

Range: stddev (m) 0.002 Rotational speed (rad/s) [-0.5,0.5]

Rotation: stddev (deg) 0.2 Simulation step (s) 0.2

Translation: stddev (m) 0.01 Simulation duration (s) [1.0,4.0]

Bearing FOV (deg) 120 Safe distance (m) 1.5

Range FOV (m) [1.0,8.0] Number of landmarks 20

Initial position: ([m, m]) [10.0,0.0] Initial sigmas ([m, m, deg]) [0.05,0.05,0.01]
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Figure 5.11: A few representative steps of planning and execution using our pro-
posed algorithm, over advancing, but non-consecutive time instants during a single
exploration process. Virtual landmarks are embedded in the underlying grid cell en-
vironment map with occupancy probabilities shown in grayscale color. Error ellipses
(2 standard deviations) of observed landmarks (orange) and robot poses (green) are
overlaid on top of the corresponding best estimates. An RRT rooted at the cur-
rent robot pose is constructed (purple). The trajectory from the RRT offering the
expected minimum cost is marked by a red line. From top left to bottom right,
one figure showing the expected best trajectory is followed by a figure showing its
execution, and the final figure simply represents the final step of the exploration task.
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We analyze the performance of the proposed algorithm in a simulated environment

(see Fig. 5.11 as an example). The simulation employs an environment with point

features uniformly distributed in its inner region (the square [−20m, 20m] in Fig.

5.11). The robot is equipped with a range sensor with a limited field of view (FOV)

that is capable of measuring the relative range and bearing to a landmark. Zero-mean

Gaussian noise is added to both measurements. Our mobile robot is configured as a

Dubins car, which we assume has constant translational and rotational speed during

one simulation period T . The assumed vehicle dynamics are as follows:

xt = xt−1 + vT1dt cos θt−1 (5.31)

yt = yt−1 + vT1dt sin θt−1 (5.32)

θt = θt−1 + ωT1dt, (5.33)

where vT1 ∈ [vmin, vmax], ωT1 ∈ [ωmin, ωmax], t ∈ [Tmin, Tmax]. Similarly, zero-mean

Gaussian noise is added to the state propagation equations above. We also place

a circumscribed obstacle radius around landmarks to avoid collision. The robot is

initialized with low uncertainty to perform the exploration task. The configuration

details of our simulation environment are listed in Table 5.1.

The RRT planner only takes samples within the free space, which is defined

by an occupancy probability less than 0.4. To take into account the kinodynamic

constraints, we construct a motion library in advance by forward simulating the ve-

hicle with all possible combinations of simulation period, translational and rotational

velocity. In the Steer function, the connectivity of nodes is checked through searching

for the nearest end point in the motion library given a certain radius.
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5.4.1 Comparison

We analyze the performance of our proposed algorithm by comparing it with two

variants of entropy-based exploration algorithms.

1. SLAM-OG [49]. The utility function consists of a normalized localization com-

ponent (SLAM) and a normalized occupancy grid (OG) mapping component:

USLAM OG = α
ISLAM(X ,L|a)

ISLAMmax

+ (1− α)
HOG(m|a)

HOGmax

, (5.34)

where ISLAM ≈
∑|Lo|

i=1

√
det(Σli), HOG =

∑
mi∈mH(mi).

2. OG [94], [84]. The utility function computes the map entropy weighted by the

likelihood of robot poses:

UOG =

∫
X
H(m|X ,Z)p(X ,Lo|Z) (5.35)

≈ 1

N

N∑
n=1

H(m[n]|X [n],Z). (5.36)

In the first utility function (SLAM-OG), the uncertainty of continuous pose

variables is expressed using differential entropy, unlike occupancy grid maps with a

discrete probability distribution. As a consequence, the scale of pose uncertainty

is much smaller than that of map entropy [93]. The second utility function (OG)

prioritizes grid cells that lie inside the robot’s current sensor observation cone. In

addition, the potential impact of loop closures on previously observed portions of the

map (and their accuracy) is ignored, due to the utility function’s emphasis on the

entropy of occupancy maps.
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5.4.2 Results
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(a) Sum of landmarks’ uncertainty
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Figure 5.13: The results of 50 exploration trials with the same randomly initialized
landmarks for every algorithm.

The simulated experiments were conducted such that all the parameters are the same

for all algorithms except for the weight of the distance cost. Here we used a dis-

tance weight with a constant rate of decay with respect to the area discovered, or

α = wmax
#free cells
#total cells

. For each algorithm, the maximum weight wmax was chosen to

achieve the best performance through exhaustive search. Landmarks were uniformly

sampled in the environment and 50 environments were generated. We also tested
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all algorithms using two levels of resolution for the virtual landmarks and occupancy

grids: 2.0(m) and 0.5(m) to see the effect of using a high resolution map. One exam-

ple of exploration using the EM algorithm with a low resolution is demonstrated in

Fig. 5.11. The performance of the algorithms was averaged among the 50 experiments

performed, as listed in Fig 5.13.

Fig. 5.13a shows the uncertainty reduction of landmarks, where the uncertainty

is computed by
∑

l∈L tr(Σl), in which unobserved landmarks have initial estimates

σ0 = 3.0. On one hand, this metric takes into account localization and mapping

uncertainty through observed landmarks; on the other hand, it also measures the

exploration rate by incorporating unknown landmarks. Fig. 5.13b shows the evo-

lution of localization error by evaluating maxx∈X tr(Σx). We also compare different

algorithms with respect to average map entropy (
∑
H(mi)/Nm) reduction, shown in

Fig. 5.13c. The planning time is shown in Fig. 5.13d under Ubuntu 14.04 on an

i7-6950X CPU, although these Python-based implementations are capable of futher

optimization.

We have the following observations from the comparisons. The OG algorithm,

weighing map entropy by localization uncertainty, has a comparable exploration rate

with the proposed algorithm (EM) in the beginning (Fig. 5.13a, 5.13c). However,

landmark uncertainty is reduced at a lower rate when most of the landmarks are

observed (Fig. 5.13a). In addition, by exploring with the EM algorithm, we end up

with more accurate feature-based maps - their curves are closer to zero in the final

stage of Fig. 5.13a. The SLAM-OG algorithm places constant relative weights on

SLAM and OG uncertainty, and thus its exploration is the most conservative, but it

has the lowest localization error as shown in Fig. 5.13b. In contrast, the EM algorithm

is able to maintain low trajectory uncertainty and it achieves a superior exploration

rate until landmark uncertainty is close to zero. More importantly, the planning time
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Figure 5.14: An exploration example in a structured environment.

of the EM algorithm is much cheaper because it doesn’t need to calculate the map

entropy for every candidate by sampling from the posterior trajectory distributions

(Eq. 5.36). Overall, by using a finer resolution, the performance of all algorithms

improves. However, for the EM algorithm, the small gains in performance do not

appear to merit the sacrifice in computation time.
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Figure 5.16: Three EM exploration examples in simulated office, parking lot and
real-world lab environments (from top to bottom). Trajectory estimate and ground
truth are plotted with blue/green dashed lines. We also query the optimal path using
different algorithms at the same moment off-line, which are shown with solid lines:
EM (red), RHEM (orange) and NBV (blue). Frontiers are represented as purple
squares, and predicted place recognition constraints are shown as thin green lines.
All examples required 8-9 min. of real-time operation.

5.5 3D Experiments using Pose SLAM

(a) Jackal w/ VLP-16 (b) Stevens ABS laboratory

Figure 5.15: Our UGV platform and test environment.

We analyze the performance of our proposed algorithm in two simulated environments

where we can obtain ground truth data, and in a real environment. The robot is
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intended to explore the environment given only a bounding box, and terminates when

no unknown area is reachable. In all experiments, we use a Clearpath Jackal UGV

(Fig. 5.15a), which is equipped with odometry and a VLP-16 LiDAR with 3-meter

range, intended to emphasize uncertainty. We implement segment-aided SLAM and

EM exploration in ROS, and the simulation is built upon Gazebo.

5.5.1 Comparison

To better assess the proposed algorithm, We compare it with two variants of next-

best-view approaches. Throughout the comparison, we use the same path generation

method, and the utility function is regarded as the only independent variable. Con-

sequently, our implementations differ somewhat from the documented performance

of the original algorithms. We also note that the following utility functions depend

entirely on the occupancy grid map, not the virtual map.

Next-best-view (NBV): The NBV planner computes accumulated gain discounted

exponentially by distance from start. The gain is defined with regard to the occupancy

status of the visible volume at pose xT+i detailed in [47], and thus

UNBV(XT :T+N) =
N∑
i=1

Gain(xT+i) exp(−λd(XT :T+i)). (5.37)

Uncertainty-aware receding horizon exploration and mapping (RHEM): The

RHEM planner [48] improves the result in NBV by taking into account vehicle and

feature uncertainty. Specifically, we apply UNBV to search for a goal point, then a

nested utility function is evaluated on alternative paths to the designated goal point,

U
(2)
RHEM = − log det(Σ̃xT+N

)−
∑
k

log det(Σ̂lk), (5.38)
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where we switch to lk in the above notation to indicate actual rather than virtual

landmarks. Similarly, in a featureless environment, we resort to the same technique

to acquire an upper bound of a virtual landmark’s covariance, but the utility function

in RHEM doesn’t include the uncertainty of unknown spaces that have not yet been

mapped.

5.5.2 Simulation Environments

Figure 5.17: Gazebo-based simulation environments explored by a simulated Jackal
UGV. Results on the right show mapped volume, mapping error and localization error
with respect to traveled distance over 30 trials starting from the origin of each map.

The simulated experiments were conducted in two environments (10 m × 10 m), an

office and parking lot, featuring different densities of objects for localization (see Fig.

5.17). All algorithms were executed over 30 trials, starting from the same location.

We use three statistics with respect to traveled distance to analyze the performance:

1. Exploration progress is computed as the spatial volume considered as free or

occupied in a 3D Octomap [25].

2. We measure the localization quality using root-mean-square error (RMSE) of
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the entire trajectory,

ETrajectory =

√√√√ 1

T

T∑
i=0

||x̂i − xi||2. (5.39)

3. Map error is computed as the RMSE of all points transformed based on the

estimated trajectory,

EMap =

√√√√ 1

M

M∑
k=0

||p̂k − pk||2. (5.40)

From the results presented in Fig. 5.17, it is evident that the EM algorithm

maintains the highest exploration rate in terms of mapped volume, and more im-

portantly it effectively modulates both trajectory and map error. The outcome can

be reasoned from a few moments during EM exploration in Fig. 5.17. The NBV

approach is solely based on unexplored volume, thus prone to erroneous state esti-

mation. Aside from uncertainty, its utility is exponentially discounted by distance

cost, which renders information obtained at a greater distance negligible. To remedy

localization error, RHEM is inclined to take a detour to where the robot can reacquire

previously mapped segments, but generally the improved path resides in known space.

Therefore, improving one utility impairs the other one because of the separation of

exploration and localization metrics. To better understand the difference in move-

ments during exploration, we produce heatmaps of robot positions in the parking lot

environment (see Fig. 5.18). We can see the robot was more attentive to places close

to vehicles in the parking lot using the EM exploration; meanwhile, both RHEM and

NBV left a large amount of footprints in the empty area, and the NBV planner had

less interest in the right-half, less “informative” space.
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Figure 5.18: Heat map of robot positions using kernel density estimation over 30
experiments in the parking lot environment. The 3-meter scale indicates the sensor
range simulated.

5.5.3 Real world environment

We also wish to demonstrate the applicability of our proposed algorithm to real

robot platforms. The real-world experimental scenario was located at the Stevens

ABS Engineering Center (25 m×15 m), similar to the simulated office, occupied with

workbenches and chairs (Fig. 5.15b). All parameters are kept the same as in the

simulated environments. Progressive instances of a representative execution trace are

depicted in Fig. 5.16. We can observe that drift from the ground truth trajectory

(obtained from LeGO-LOAM [91]) becomes more severe when the vehicle is further

from the starting location. As a result, it traveled through the central region several

times for better localization. Inspection of the resulting trajectory illustrates the

balance between exploration and exploitation.
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5.6 Conclusions

We have adapted an EM exploration algorithm to the widely generalizable context of

pose SLAM, which exploits segmentation of point clouds to enhance place recognition.

The proposed framework, comprising virtual map construction and computation of

the covariance upper bound, offers an advantageous capability of forecasting future

actions without requiring the explicit modeling of features in SLAM. The EM algo-

rithm exhibits superior performance in exploration rate, localization and mapping

accuracy in two simulated experiments. The computational complexity is discussed

in our original work [18], but throughout our experiments, it is able to achieve near

real-time querying, and all experiments required less than 10 minutes of real-time

operation. However, our path primitives only consist of paths to frontier locations,

thus uncertainty continues increasing as exploration progresses. A more appropriately

designed routing scheme is desired. Future work also entails validation in larger and

more complex real-world environments.
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Chapter 6

Autonomous Exploration in Virtual Maps on ROVs

In this section we present the implementation of BlueROV underwater SLAM and ex-

ploration algorithms and real experiments in an underwater environment. As shown

in Figure 6.1, most components are similar to those implemented on our UGV. There-

fore we will focus on the SLAM component of the architecture.

Sensors SLAM Belief Propagation

Path Generation

Utility Evaluation

Motion Planning

pose

map

path

Figure 6.1: Diagram of the underwater exploration framework.

6.1 Keyframe-based SLAM

The underwater SLAM framework is built upon a keyframe-based pose graph. Each

keyframe is chosen based on the following heuristic: a keyframe is inserted when the

robot moves a certain distance or rotates a certain angle. As shown in Figure 6.2,

keyframes are added at around 0.2 Hz. Considering our ROV is operated manually or

autonomously at a low speed and its sonar has a large field of view, low-speed state

estimation is sufficient in our experiments. The frontend of SLAM performs scan

matching on features extracted from sonar images in keyframes. The scan matching

relies on an initial pose estimate from dead reckoning, which fuses three sources of

measurements: DVL, IMU and pressure sensors at 5 Hz. The constraints from the
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Sonar Image Feature Extraction Mapping
Occupancy Map
Output

Feature Matching Graph Optimization
Loop Closure

Detection

DVL/IMU/Pressure Dead Reckoning
Transform
Integration

Transform Output

5Hz

5Hz

0.2Hz 0.2Hz

5Hz

0.2Hz

Figure 6.2: Diagram of the underwater SLAM framework.

frontend are incorporated in a pose-only factor graph. Graph optimization on the

factor graph provides a low-frequency state estimate, which is integrated with dead

reckoning to produce high-frequency estimate. Given the trajectory and feature points

at keyframes, the purpose of the mapping module is to generate an occupancy map

which is used in path planning. The drift is corrected by the constraints provided by

loop closure detection, which serves to match current keyframe with the past history

of keyframes.

6.1.1 Feature Extraction

The 2-d imaging sonar emits sound waves and the echo received by the sonar carries

the characteristics of the imaging area, which is represented by {(ri, bj), 0 ≤ i ≤

Nr, 0 ≤ j ≤ Nb} in polar coordinates. We assume the measurement corresponding

to every beam is independent and each beam is processed separately. Given a beam

of intensity measurement zj = {Iij = I(ri, bj), 0 ≤ i ≤ Nr}, we’re interested in

identifying range bins that represent sound pulses returned by targets in the water.

The extracted features provide better situational awareness in cluttered environments,

helping improve localization, decision-making and obstacle avoidance. Examples of

measurements from 2-d imaging sonar are shown in Figure 6.3.
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Figure 6.3: CFAR feature detection. Raw sonar images using Oculus M750d with 512
beams are shown at left. The adaptive threshold corresponding to the sonar beams
marked with red lines at left using SO-CFAR is represented by the red plot lines on
the right. Cells with intensity that is larger than the threshold are treated as targets.
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Figure 6.4: SOCA-CFAR feature detection. Similar to Figure 6.3, the left column
shows raw data and the middle column visualizes detected features (orange points).
Transformed points in Cartesian coordinates are shown on the right.
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In order to extract features reliably in all kinds of environments with varying

noise power, we employ a Constant False Alarm Rate detector, which initially was

designed for radar, for 2-d imaging sonar. Below we use the notions in [95].

We assume a square-law detector on range bins and the intensity at each range

bin is independently exponentially distributed with probability density function (pdf )

f(Iij) =
1

2λ
exp(−Iij

2λ
). (6.1)

Under Neyman-Pearson hypothesis testing, consider the following hypothesis

H0 : λ = µ,

H1 : λ = µ(1 + S),

where µ denotes the total background clutter-plus-thermal noise power without tar-

gets in range bin (ri, bj), and µ(1 + S) denotes background with added signal with

signal-to-noise-ratio (SNR) S in the presence of targets. A cell under test (CUT)

is compared against test statistics using cells in a sliding window excluding CUT.

Let T̃ij be the statistics derived from a sliding window (e.g., average intensity in the

window), and let Tij = τ T̃ij be the test statistics. Then the decision rule is given by

Iij
H1

≷
H0

Tij. (6.2)

The false alarm rate, i.e., choosing the alternative hypothesis while the null

hypothesis is true, is obtained by

Pfa = ET̃ij [P (Iij > τT̃ij)] =

∫
T̃ij

exp(−τ T̃ij
2λ

)P (T̃ij)dT̃ij. (6.3)
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For a desired false alarm rate, the threshold multiplier τ can be calculated by solving

the above equation. To achieve a CFAR property, τ is required to be independent of

the distribution parameter λ.

A variety of CFAR detectors have been proposed and one of the most widely

used ones is cell-averaging CFAR (CA-CFAR), where the test statistic is defined as the

average intensity in a sliding window around the tested range bin. To tackle different

operational conditions, e.g., single target, multi-target and clutter edge, smallest-

of cell-averaging CFAR (SOCA-CFAR), greatest-of cell averaging CFAR (GOCA-

CFAR) [96] and order-statistic (OS) CFAR [97]have been proposed. Based on our

test with different experiments with imaging sonar, SO-CFAR provides a better trade-

off between accuracy and computation cost.

Suppose the cells around CUT are {Ii−N,j, ..., Ii−1,j, Ii+1,j, ..., Ii+N,j}. Two av-

erage intensities computed from leading and trailing window are given by

T̃ij,< =
1

N

N∑
n=1

Ii−n,j, T̃ij,> =
1

N

N∑
n=1

Ii+n,j. (6.4)

The test statistics in SOCA-CFAR is

Tij = τ min(T̃ij,<, T̃ij,>), (6.5)

where τ , given a specified false alarm rate, can be computed as follows [98],

Pfa =
(
2 +

τ

N

)−N N−1∑
n=0

(
N − 1 + n

n

)(
2 +

τ

N

)−n
. (6.6)

Features detected by SOCA-CFAR {(rni , bnj)|0 ≤ n ≤ N} can be transformed

to Cartesian coordinates, forming a 2D point cloud as {pn = (xn, yn) ∈ R2|0 ≤ n ≤
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N} where

xn = rni cos(bnj), yn = rni sin(bnj). (6.7)

A few examples of sonar measurements taken at a marina are shown in Fig-

ure 6.3 and Figure 6.4. Figure 6.3 visualizes the decision threshold Tij for beams

highlighted by red lines and Figure 6.4 visualizes extracted feature points in polar

and Cartesian coordinates.

6.1.2 Feature Matching

In this work, we assume the vehicle is operated in a planar environment and the sonar

takes measurements solely from objects in the same plane. Therefore, both robot

poses and relative measurements are elements in special Euclidean group SE(2)
.
=

(R, t) : R ∈ SO(2), t ∈ R2}. Let xs ∈ SE(2),xt ∈ SE(2) be two 2D poses at which

two sets of features, denoted as Ps,Pt, are observed respectively. The 2D points

are represented in a local frame. Presumably, xt and xs are referred to as target

pose and source pose, and Pt and Ps are referred to as target points and source

points. Assuming the vehicle is operated in a planar environment and the sonar

takes measurements solely from objects in the same plane, the relative transformation

between two poses at which two sonar images are taken can be recovered using scan

matching techniques. Specifically, we want to recover the relative transformation

between two poses xts ∈ SE(2) combining relative rotation Rts ∈ SO(2) and relative

translation tts ∈ R2,

xs = xt ⊕ xts,xts = xt 	 xs = (Rts, tts), (6.8)

Rts = R>t Rs, tts = R>t (ts − tt)), (6.9)
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where we use ⊕ and 	 to denote the composition and inverse composition of two

elements in SE(2).

Iterative Closest Point

The most widely used algorithm is iterative closest point (ICP), which minimizes the

following cost function

J(xts) =
∑

pt∈Pt,ps∈Ps

||Ttsps − pt||2 (6.10)

=
∑

pt∈Pt,ps∈Ps

||Rtsps + tts − pt||2, (6.11)

where T p = Rp + t represents the action of x ∈ SE(2) on p ∈ R2. The corre-

spondence between pt and ps in the above cost function is established by nearest

neighbor search. However it’s well known that ICP is plagued by the problem of local

minima due to non-convexity. The final result heavily depends on the quality of the

initial transformation. Typically the initial guess is estimated by dead reckoning, for

instance, from IMU, wheel odometer, etc. The scan matching using ICP is impaired

more significantly in underwater environments for three main reasons.

1. Features extracted from sonar images are sparse due to limited angular resolu-

tion. The imaging sonar in our experiments has angular resolution of 1◦, which

limits its tangential resolution at 30 m range no more than 0.5 m.

2. Measurements are noisy as a result of the low signal-to-noise-ratio of imaging

sonar.

3. Dead-reckoning is typically poor without a navigation-grade IMU. The main

cause of dead-reckoning error is the drift of heading estimation. For example,
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the IMU in our experiments achieves heading accuracy of 2◦ RMS with a stable

magnetic environment.

Examples of using ICP on sonar features in two consecutive frames are illustrated in

the second column in Figure 6.5. Compared to our method, it’s evident that ICP

results initialized from odometry get stuck in local minima. The problem is more

noticeable during loop closure, where a large amount of drift has accumulated, as

shown in Figure 6.6.
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Figure 6.5: Illustration of our proposed sonar scan matching method applied to se-
quential keyframes. Colored points (source) represent features extracted from the
current sonar frame and black points (target) represent accumulated features using
the previous 3 frames. From left to right: initial transformation from odometry; ICP
result based on initial guess; initialization result from our proposed sensing model;
refined ICP result based on initialization in the third column.
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Figure 6.6: Illustration of our proposed sonar scan matching method applied to non-
sequential keyframes to detect loop closure. Colored points (source) represent features
extracted from the current sonar frame and black points (target) represent accumu-
lated features. From left to right: initial transformation from odometry; ICP result
based on initial guess; initialization result from our proposed sensing model; refined
ICP result based on initialization in the third column.

Globally initialized ICP

Recently globally optimal solution of the ICP problem has been studied [99]; however

its optimality defined by minimum matching distance isn’t necessarily correct. In

this work, we propose to alleviate the problem of local minima by performing a

global initialization beforehand. Then ICP is used to locally refine the estimate. As

shown in real experiments this tentative solution yields good results.

Let x̃s be the globally initialized source pose. The proposed global initialization



120

follows set consensus maximization, which solves the following problem,

x̃s = argmax
xs

∑
ps∈Ps

I(d(ps) ≤ ε), (6.12)

where I = 1 when the condition is true, and I = 0 otherwise. d is defined as the

distance to the nearest target point,

d(ps) = min
pt∈Pt

‖Rtsps + tts − pt‖. (6.13)

A probabilistic derivation

We model scan matching using the same probabilistic formulation in [100]. We apply

Bayes’ rule to find the posterior distribution over robot’s source pose

p(xs|xt,Pt,Ps,u) ∝ p(xs|xt,u)p(Ps|xs,xt,Pt). (6.14)

The first term can be obtained from odometry and is generally modeled as a mul-

tivariate Gaussian distribution. However we simply assume the pose is uniformly

distributed around the initial guess provided by odometry, which results in

p(xj|xt,Pt,Ps,u) ∝ p(Ps|xs,xt,Pt). (6.15)

The second model describes the probability of observing Ps at xs given the

existing point cloud, or map, Pt at xt. If we assume an individual point is measured

independently, it can be represented as

p(Ps|xs,xt,Pt) =
∏

ps∈Ps

p(ps|xs,xt,Pt). (6.16)



121

Now consider the following measurement model,

p(ps|xs,xt,Pt) =


p1, if d(ps) ≤ ε

p2, otherwise.

. (6.17)

It’s more likely to detect features in the vicinity of existing measurements, thus p1 >

p2. We can derive the same set consensus maximization problem as Equation 6.12,

x̃j = argmax
xs

∑
pj∈Ps

log p(pj|xs,xt,Pt)

= argmax
xs

∑
d(pj)≤ε

log p1 +
∑

d(pj)>ε

log p2

= argmax
xs

∑
d(pj)≤ε

log p1 +
∑

d(pj)>ε

log p2 −
∑

d(pj)≤ε

log p2 −
∑

d(pj)>ε

log p2

= argmax
xs

∑
d(pj)≤ε

log
p1

p2

= argmax
xs

∑
d(pj)≤ε

1. (6.18)

Algorithm

Intuitively, the optimal pose corresponds to the pose that is able to observe the most

points around reference cloud. More interestingly, the optimization can be achieved

without specifying parameters in the sensor model. While in theory the exhausive

search of source pose could be expensive, we present two methods to speed up the

process. Firstly, the uncertainty of the most recent pose, which typically is the

source pose, can be obtained effortlessly assuming we use incremental smoothing and

mapping [86]. Therefore, it’s reasonable to limit the search within a certain confidence

interval around the mean estimate. Secondly, a nearest neighbor query such as using
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k-d tree can be avoided by generating a look-up table in advance. Each cell in the

look-up table stores whether there exists a target point within radius ε.

Any global and derivative-free optimization algorithms could be used to solve

Equation 6.12 or 6.18. Specifically in this work we choose the SHGO algorithm [101]

for fast convergence, which has been implemented in Scipy1. Let x̃s be the optimized

source pose, x̃ts = xt 	 x̃s be the resulting transformation. Next ICP is performed

using the initialization x̃ts and we derive a refined solution x̂ts. In the next section,

we will show its application of building sequential and non-sequential constraints in

pose SLAM. Here we only demonstrate its performance given input poses and points

as in Figure 6.5 and 6.6.

The estimated transformation from scan matching can be erroneous. We pro-

pose the following creterion to reject outliers.

1. Both source and target should contain enough points,

|Pt| > ηmin points,i, |Ps| > ηmin points,j.

2. The estimated transform should not deviate significantly from the initial trans-

formation,

‖x̂ts 	 xts‖ < ηdeviation.

3. The target and source points should have enough overlap upon finishing match-

ing. The overlap is calculated as

1

|Ps|
∑

ps∈Ps

I(d(ps)) < ε) > ηoverlap.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.shgo.html
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6.1.3 Covariance Estimation

Estimating the uncertainty of our scan matching estimate is crucial for accurate state

estimation. However existing closed-form approaches (e.g., [102], [103]) to estimating

ICP uncertainty is likely to be overly optimistic, i.e., the covariance is smaller. Monte

Carlo methods, which essentially run ICP with different initial parameters, are able

to accurately reveal the uncertainty caused by erroneous convergence in local minima.

Suppose we repeatedly run ICP N times and at each time a different initial

guess is provided. As we use SHGO optimization in the global initializaiton, we keep

track of the samples during maximization and select N samples with the highest

objectives. Let x̂
(i)
ts be the estimate at the i-th run. Then the covariance matrix is

given by

Σ̂xts =
1

N − 1

N∑
i=1

(x̂
(i)
ts − ¯̂xts)(x̂

(i)
ts − ¯̂xts)

>, ¯̂xts =
1

N

N∑
i=1

x̂
(i)
ts . (6.19)

6.1.4 Building the Factor Graph

In this section, we discuss the construction of factor nodes in the factor graph. As

shown in Figure 6.7, there are two types of factor nodes computed from sequential

scan matching and non-sequential scan matching, denoted as green and orange nodes

respectively. The sequential factors represent the relative relationship with respect

to the previous pose; error is unavoidably accumulated on the chain of poses. In

contrast, non-sequential factors, also known as loop closure constraints, connect two

poses that are separated in terms of time and thus are able to correct the drift of

recent poses. The factor graph is given by

f(Θ) = f0(Θ0)
∏
i

fO
i (Θi)

∏
j

fSSM
j (Θj)

∏
q

fNSSM
q (Θq).
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Figure 6.7: Key components of the SLAM system. The pose variable at each keyframe
is denoted as black squauare. The core factor graph is comprised of pose variables at
keyframes (black squares) and two types of factors: sequential scan matching factors
(blue circle) and loop closure factors (orange circle). Every keyframe is associated with
feature points detected in the sonar image. The detected points at every keyframe
independently contribute to the final occupancy grid map.

Sequential Scan Matching

Sequential factors between two consecutive poses xk−1 and xk can be computed

through scan matching on two point clouds collected at these two moments. To

increase the robustness of scan matching, we incorporate extracted features from the

previous Nssm > 1 frames, assuming the drift is negligable within a short period of

time. Let Tk−1,k−iPk−i be the transformed points at keyframe k− i in the coordinate
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frame of pose k − 1, then the target points are given by

Pt :=
Nssm⋃
i=1

Tk−1,k−iPk−i. (6.20)

An illustrative diagram of building sequential factors is shown in Figure 6.8. As

discussed in the previous section, in the case that scan matching failed, we instead

use the initial transformation from dead reckoning.

xk−Nssm · · · xk−1 xk

Pt Ps

xt xs

Figure 6.8: Building sequential factors from scan matching.

Non-sequential Scan Matching

Non-sequential scan matching, or loop closure detection in Figure 6.2, follows the

same procedure as that in sequential matching, except that source points are limited

to be meausured at an earlier time. The connection results from recognizing features

that have been observed before. Non-sequential factors serve to eliminate the drift

from dead reckoning or sequential scan matching.

Instead of using source points only from the current keyframe, we construct

source points in a simular way to that in sequential scan matching as follows,

Ps :=
Nnssm⋃
i=1

Tk,k−iPk−i. (6.21)

We limit the searching window of target frames to be far away from the current frame.

Let tn be the last keyframe in the target points and we impose the following condition
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k − tn > Nsep. Initially all keyframes prior to tn are used for global initialization

and upon finishing initialization keyframes that don’t overlap with source points are

discarded. The keyframe with the maximim overlapping ratio with source points

is treated as the target pose. Figure 6.9 demonstrates one example set-up of non-

sequential scan matching.

xt1 · · · xtn xk−Nnssm · · · xk

Pt Ps

xt xs

Figure 6.9: Building non-sequential factors from scan matching.

Outlier Rejection

xi xj

xk xl

x̂jlx̂ik

Figure 6.10: Pairwise consistency check. Two loop closure constraints, x̂jl and x̂ik, are
obtained. The consistency is checked by comparing the difference of transformations
following two directions.

Although a few verification methods are discussed, erroneous loop closure de-

tection still exists. The rejection of such outliers could only be achieved with the

assistance of other constraints. We observe that correct loop closure contraints should

be consistent (defined below) with the current pose estimate and potentially future

loop closure constraints. Therefore, assuming outliers occur with low probability, a

set of consistent measurements is likely to be correct.
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We adopt the pairwise consistent measurement set maximization (PCM) [104]

technique to reject outliers. Let x̂jl and x̂ik be a pair of loop closure measurements

and we assume l < k. An estimate of x̂ik can be obtained using estimated poses and

measurement x̂jl given by

x̂′ik = xij ⊕ x̂jl ⊕ xlk. (6.22)

The flow of relative transformations is illustrated as the long arrow in Figure 6.10.

The two constraints are determined to be pairwise consistent if the following condition

is satisfied,

‖x̂ik 	 x̂′ik‖Σ ≤ ηpcm, (6.23)

where ‖ · ‖Σ calculates the Mahalanobis distance and Σ can be obtained from ICP

covariance Σ̂ik.

Given a set of measurements, a mutual consistency check is performed. The

outcome forms an undirected graph with nodes representing pairs of measurements

and edges representing pairwise consitency. An example with 4 measurements is

visualized in Figure 6.11 and only 3 out of 6 pairs are pairwise consistent. The

largest subset of pairwise consistent measurements, where every pair in the subset is

pairwise consistent, can be identified as a maximum clique in the graph. Although

finding the maximum clique is expensive and hard to approximate, fortunately the

graph is typically small enough that exhausitively searching for the maximal clique

is achievable in real-time experiments.

In implementation, we maintain a queue of loop closure measurements by ar-

rival time. At each keyframe the PCM is executed to find the maximum clique. If

the clique number is larger than Npcm, all measurements in the clique are regarded as

correct and those which haven’t been added to factor graph are added. In Figure 6.11,
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if Npcm = 3, three correct measurements will be accepted until x13.

x1 x2 x3 x4

x13 x12 x11 x10
4-11 3-12

2-13

1-10

Figure 6.11: Four pairs of loop closures are detected as constraints between two
keyframes. The erroneous one (red) is excluded in the maximum clique.

6.1.5 Occupancy Mapping

Our occupancy mapping framework is based on the occupancy grid mapping algo-

rithm [26]. The entire map is discretized into independent grid cells and the occu-

pancy probability of each cell is updated recursively through Bayes’ filter. However

our state estimation from SLAM exhibits severe drift; and at the moment the drift is

corrected by loop closures it’s desired to correct the occupancy mapping error using

the updated trajectory. Therefore, we employ a submap-based occupancy mapping

algorithm [105], which builds a local map anchored at each keyframe. We are able to

achieve efficient map recalculation when a segment of the trajectory is changed.

Merging Submap

Suppose we are able to obtain keyframe poses in a reference frame from SLAM denoted

as X = {xk}Kk=1. Given the sonar image and extracted features, we can build a

submap located at a local frame denoted as Sk = {mk
i } where mk

i ∈ R2 represents a

2D grid cell in the k-th keframe. Let p(mk
i = 1) represent the probability of the cell

being occupied and lk(mk
i ) = log

p(mk
i =1)

1−p(mk
i =1)

represents its log-odds notation. We use

superscript k to denote cells or log-odds values in the k-th keyframe. The entire map

is represented as the composition of submaps M = {Sk}Kk=1.
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Figure 6.12: Inverse sensor model and the submap from one sonar image.

In our keyframe-based SLAM, a submap only consists of one sonar frame,

thus the occupancy values can be calculated from the inverse sensor model directly.

Unlike laser beams, sonar is capable of detecting targets that are hidden behind the

first object along sensor beams due to wide vertical aperture. This phenomenon

is more obvious in our field test as there exist floating docks that don’t block sonar

beams entirely. Similar to the inverse sensor model for laser beams where cells before,

around and behind the hit point are modeled as free, occupied and unknown, we also

treat hit points behind the first one as occupied. In essence all detected targets are

believed to be occupied but only the area in front of the first target is believed to

be obstacle free. The inverse sensor model is shown in Figure 6.12 and Gaussian

convolution is used to smooth occupied probability around hit points.

Given multiple submaps at the corresponding keyframe pose X ,M, we intend
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Figure 6.13: The occupancy map consists of submaps located at every keyframe.
Once the pose of one keyframe (bottom right) is changed, its log-odds are corrected
efficiently.

to output an occupancy map {mi} at cells in the global frame. The occupancy

probability integrates all measurements at different poses, which can be incrementally

updated through the Bayes filter as

l(mi) =
∑
Sk∈M

lk(Tkgmi) (6.24)

where Tkgmi represents the action of transforming global grid cells to a local frame.

We ignore the prior in the summation as by default we assume an uninformative prior

for the occupancy map p(mi = 1) = 0.5. Therefore, the resulting occupancy log-odds

is simply the summation of lod-odds in individual submaps.

Updating A Submap

Adding non-sequential factors results in a constant change of pose history. We will

update the contribution of the k-th keyframe when the change including translation
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(a) Step 10 (b) Step 26 (c) Step 42

(d) Step 58 (e) Step 74 (f) Step 90

Figure 6.14: Underwater occupancy grid mapping.

and rotation exceeds a specified threshold. If computation resource permits, the

maximum shift due to pose change shouldn’t be larger than 1 grid cell.

Because the clamping rule [25] is not used in merging submaps, the update

due to pose change can be implemented efficiently by removing the log-odds values

and adding a new update,

l′(mi) = l(mi)− lk(Tkgmi)︸ ︷︷ ︸
remove old update

+ lk(T ′kgmi)︸ ︷︷ ︸
add new update

. (6.25)

In the equation above, the local submap represented by log-odds values doesn’t need

to be recalculated.

In practice, the submap in every keyframe stores the indices of its associated

grid cells in the gloabal frame. During updating, we simply substract log-odds val-
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ues from old indices and add new ones while updating new indices. Examples of

occupancy mapping are shown in Figure 6.14.

6.2 Experiments and Results

To validate the proposed exploration algorithm in an unknown, complex underwater

environment, simulated and real experiments are carried out. We first present real

experiments and afterwards we will show how the simulation is realized using manually

collected data. Introduction of the vehicle and sensors used in the experiments are

skipped as they remain the same as in Chapter 3.

Besides nearest frontier (NF) and next-best-view (NBV) algorithms, in this

chapter we also compare EM with a heuristic approach (Heuristic). It switches be-

tween two modes: if current pose uncertainty is smaller than a specified threshold,

NBV is used to achieve rapid exploration; otherwise it will seek a revisitation loca-

tion to reduce pose uncertainty. The metric of pose uncertainty is given by D-Opt

(assuming 2D pose) |Σx|
1
3 .

6.2.1 Real Experiments

The real experiments were carried out in a marina at the United States Merchant

Marine Academy (USMMA)2. An overview of the experiment setup is shown in Fig-

ure 6.15. Prior to launching the vehicle, it is manually commanded to a starting

location facing upward (x direction in the figure). The goal is to explore the map

within a bounding box with dimension 85 m × 60 m. Three runs were performed for

each algorithm and results are shown in Figures 6.16 6.17 and 6.18.

In Figure 6.16, the estimated map represented by a time-colored point cloud,

trajectory and loop closure measurements are visualized, overlaid with satellite im-

2https://www.usmma.edu/
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Figure 6.15: Setup of real experiments at USMMA.

ages. It’s worth noting that the postions of satellite images are manually adjusted

and it only servers as a qualitative result to show the discrepancy between ground

truth and the estimated map. Firstly, it’s evident that both NF and NBV take ac-

tions that favored exploration, resulting in trajectories expanding to the top-right

corner of the map quickly. As a result, loop closures are added later than EM or

Heuristic and the loop closure isn’t intentional. The map quality with regard to

NBV is the worst among four algorithms; the final map using NF looks good but

the large deviation from this final estimate during exploration is not corrected until

ending the session. By contrast, the uncertainty-aware exploration algorithms, EM

and Heuristic, ended up with dense loop closure constraints. Different from Heuristic,

which seeks revisitation only at highly uncertain states, EM takes into account map

uncertainty constantly and poses are intertwined through the entire trajectory.

Due to the lack of ground truth information and a limited number of repeated

experiments, exploration performance, evaluated with respect to map coverage and
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(a) Run 1 using NF (b) Run 2 using NF (c) Run 3 using NF

(d) Run 1 using
NBV

(e) Run 2 using
NBV

(f) Run 3 using
NBV

(g) Run 1 using
Heurisitic

(h) Run 2 using
Heurisitic

(i) Run 3 using
Heurisitic

(j) Run 1 using EM (k) Run 2 using EM (l) Run 3 using EM

Figure 6.16: Results overlaid with satellite imagery.
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(a) Run 1 using NF
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(b) Run 2 using NF
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(c) Run 3 using NF
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(d) Run 1 using NBV
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(e) Run 2using NBV
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(f) Run 3using NBV

−20 0 20 40 60 80

−20

0

20

40

60

80

0.0
0.2
0.4
0.6
0.8
1.0

co
v
er
ag
e

0 50 100 150 200 250
0.00
0.05
0.10
0.15
0.20
0.25
0.30

j§
n
j1=
3

(g) Run 1 using Heuristic
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(h) Run 2 using Heuristic
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(i) Run 3 using Heuristic

Figure 6.17: Three runs using NF, NBV and Heuristic in real environment.

pose uncertainty plotted against traveled distance, is presented to better understand

different behaviors. Four intermittent steps and final steps are plotted in Figure 6.18

and to save space only final states are plotted for NF, NBV and Heuristic as in Fig-

ure 6.17. We can see from the comparison that EM keeps maintaining low uncertainty

through three trials while the map coverage speed is similar to information-theoretic

approaches. The revisitation behavior of Heuristic can be observed clearly in run 1,

where at distance 100 the robot intentionally closed the cloop to reduce estimation

uncertainty.
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6.2.2 Simulated Experiments
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Figure 6.19: Simulation environments with six starting locations.

As there is no ground truth information in our real-world experiments, we propose

to use a simulation environment to validate our proposed algorithm. We create the

simulated map using manually collected data in the same environment as that in

the real experiment. More specifically, the simulated map is represented by a point

cloud that is obtained from the SLAM framework described above. The simulation

map is shown in Figure 6.19. During simulated exploration, feature points that are

within sensor field of view are sampled and Gaussian noise is added. We run 10

trials at 6 different starting locations (denoted as green triangles in Figure 6.19) for

every algorithm. Mapping and localization errors are reported with ground truth

information. The mapping error is calculated as follows: for every estimated feature

point, we compute its distance to the nearest ground truth point.

Simulation results are shown in Figure 6.20 and detailed metrics are also pre-

sented in Tables6.1, 6.3, 6.4, 6.2. For every metric, average value and 95 % confidence
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alg/distance 0 50 100 150 200 250 300 350 400

EM 0.10 0.34 0.30 0.32 0.33 0.31 0.31 0.29 0.28
NF 0.10 0.33 0.44 0.43 0.46 0.45 0.40 0.39 0.40
NBV 0.10 0.35 0.53 0.57 0.53 0.45 0.36 0.36 0.35
Heuristic 0.10 0.34 0.32 0.30 0.31 0.30 0.31 0.28 0.31

Table 6.1: Pose uncertainty in the simulated environment.

alg/distance 0 50 100 150 200 250 300 350 400

EM 0.75 1.72 1.83 1.89 1.90 1.93 1.93 1.96 1.97
NF 0.75 1.79 1.94 1.97 2.06 2.07 2.08 2.07 2.08
NBV 0.75 1.73 1.90 1.99 2.07 2.05 2.05 2.05 2.05
Heuristic 0.75 1.72 1.84 1.88 1.91 1.94 1.95 1.96 1.98

Table 6.2: Pose error in the simulated environment.

interval are visualized. As expected, NBV achieves the most efficient exploration but

at the expense of the highest pose uncertainty. Pose uncertainty of Heuristic and EM

is significantly lower than that in NF and NBV. It’s worth mentioning that parame-

ters in Heuristic are tuned to match the same uncertainty-awareness performance as

in EM and parameters in EM are manually adjusted for this specific environment.

While Heuristic and EM have similar pose uncertainty and trajectory error, Heuristic

falls behind EM in terms of map coverage, which is more noticable in Table 6.3.

In Figure 6.21, one run using each algorithm is presented with four metrics

with respect to traveled distance. The same phenomenon, a dense interconnection

between poses, can be observed in Heuristic and EM. In contrast, greedy algorithms

(NF and NBV) take the almost the same path to the top right corner in the beginning,

which leads to growing pose uncertainty. Although the pose uncertainty is ultimately

reduced, map accuracy is impacted as demonstrated in Figure 6.20(b) and Table 6.4.
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alg/distance 50% 60% 70% 80% 90%

EM 13.79 39.53 80.92 157.15 303.92
NF 14.90 43.63 88.38 172.30 268.67
NBV 13.90 40.55 70.36 117.93 234.01
Heuristic 14.23 41.41 80.12 186.63 396.52

Table 6.3: Map coverage in the simulated environment.

alg/distance 0 50 100 150 200 250 300 350 400

EM 0.56 0.90 0.95 0.97 1.00 1.03 1.05 1.06 1.05
NF 0.60 0.97 1.03 1.08 1.13 1.15 1.12 1.13 1.13
NBV 0.58 0.87 1.01 1.08 1.12 1.12 1.12 1.12 1.12
Heuristic 0.58 0.90 0.94 0.98 0.99 1.01 1.02 1.03 1.03

Table 6.4: Map error in simulated environment.

6.3 Conclusions

To conclude, a robust keyframe-based SLAM framework is designed and validated in

real-world experiments. Factors are categorized into sequential and non-sequential

(loop closure) constraints, both of which are obtained from scan matching using

feature points extracted using a CFAR detector on raw sonar images. To mitigate

the local minima issue in ICP, we add an initialization step prior to ICP to align two

point clouds based on set consensus. We adopt pairwise consistent measurement set

maximization to reject outliers in loop closure measurements. Given an estimated

trajectory, a submap-based occupancy map is built and efficiently corrected upon

loop closure.

We compare EM with three oether algorithms and results from both real and

simulated experiments demonstrate that EM and Heuristic are capable of revisiting

and closing the loop intentionally, thus having the lowest pose uncertainty and map

accuracy. Compared to Heuristic, the utility function in EM constantly takes into ac-

count pose uncertainty via virtual landmarks. Periodical revisitation via unnecessary
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detours is avoided, which results in faster map coverage.
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(a) Run 1: step 10
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(b) Run 2: step 10
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(c) Run 3: step 10
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(d) Run 1: step 20
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(e) Run 2: step 20
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(f) Run 3: step 20
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(g) Run 1: step 30
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(h) Run 2: step 30

−20 0 20 40 60 80

−20

0

20

40

60

80

0.0
0.2
0.4
0.6
0.8
1.0

co
v
er
ag
e

0 50 100 150 200 250
0.00
0.05
0.10
0.15
0.20
0.25
0.30

j§
n
j1=
3

(i) Run 3: step 30
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(j) Run 1: step 40
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(k) Run 2: step 40
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(l) Run 3: step 40
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(m) Run 1: step 50
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(n) Run 2: step 50

−20 0 20 40 60 80

−20

0

20

40

60

80

0.0
0.2
0.4
0.6
0.8
1.0

co
v
er
ag
e

0 50 100 150 200 250
0.00
0.05
0.10
0.15
0.20
0.25
0.30

j§
n
j1=
3

(o) Run 3: step 50
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(p) Run 1: step 56
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(q) Run 2: step 54
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(r) Run 3: step 60

Figure 6.18: Three runs using EM in real environment.
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(b) Map error
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(c) Pose uncertainty
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(d) Trajectory error

Figure 6.20: Exploration performance in the simulation.
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(a) NF
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(b) NBV
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(c) Heuristic
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(d) EM

Figure 6.21: Simulation examples using different algorithms.



143

Chapter 7

Conclusions and Future Work

The objective of this research work is to achieve robust autonomy in underwater envi-

ronments. To safely navigate in cluttered environments, an accurate and dense map,

which is required to be constructed efficiently, is essential for path planning or ob-

stacle avoidance. Robust state estimation relying on SLAM helps the robot localize

itself within the map. Exploration algorithms enable the robot to autonomously

inspect an unknown environment without human intervention. An uncertainty-aware

exploration strategy will result in accurate mapping and state estimation. We have

addressed these three major problems and proposed improvements to existing works

specifically for robots navigating in underwater environments with sparse measure-

ments and highly uncertain state estimation.

Mapping SLAM

Exploration

Mapping. We presented an improved formulation of Gaussian process occupancy

mapping using nested BCMs and test-data octrees. Equipped with these time-saving

approximations, the computational complexity of GPs has been reduced to a level
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where it can be used for real-time 3D mapping, while retaining high-quality perfor-

mance as a classifier. Next we offer two improvements for underwater feature-based

SLAM with imaging sonar, for terrain mapping. First, data association is performed

via optical flow tracking, which is more robust to noise and the absence of elevation

angle. Second, a degenerate system is partly solved by adding terrain constraints

connecting feature pairs, limiting their elevation values to be similar.

SLAM. An approach was presented for 3D mapping and localization for an un-

derwater robot in cluttered, disturbance-filled shallow-water environments equipped

with a single-beam scanning sonar. To overcome the limitations of using registration-

based SLAM in the absence of inertial and odometry measurements, we adopt a

feature-based, incremental smoothing and mapping solution, where point features

are extracted from individually thresholded (via DBSCAN), clustered (via OPTICS)

sonar range returns using the minimum covariance determinant. A factor graph is

built using measurement and process constraints, and loop- closures are identified

via iterative JCBB data association. To improve the data association robustness,

we further propose a multiple hypothesis data association framework for SLAM in

ambiguous environments. Multiple trajectory and map tracks are maintained using

a series of association hypotheses generated from JCBB. Efficient hypothesis man-

agement is organized by limiting hypothesis generation and pruning unlikely tracks,

which is enabled by providing two orderings.

Exploration. We propose the concept of virtual landmarks, which are latent vari-

ables representing the possible locations of actual landmarks in the environment. We

presented a novel utility function for the autonomous exploration problem in feature-

based maps, which essentially computes the covariance criteria at virtual landmarks.



145

The direct modeling of landmarks potentially observed in the future enables more

accurate mapping and also a comparable exploration rate with respect to traditional

methods. An improved version of EM-exploration that doesn’t depend on feature-

based SLAM is validated on an UGV and more importantly on an ROV. The appli-

cation of real-time exploration is attributed to a robust SLAM framework using 2D

imaging sonar.

7.1 Future Works

Figure 7.1: Dual-sonar configuration [1].

In the seciton, we present a few potential improvements in mapping, SLAM

and exploration that could be done in the future. Through the entire work, we have

focused on experiments using only one sonar (either mechanical scanning sonar or

2D imaging sonar) and the proposed underwater SLAM assumes a planar motion

during exploration. However the assumption doesn’t hold well in practice and non-

zero pitch angle is expected. What’s more, the unknown elevation angle is ignored

in scan matching. Therefore, a scan matching method that operates in 3D space

is necessary for better accuracy. Dual-sonar configuration has been also used in

underwater surverying [1] as shown in Figure7.1. It can signiciantly increase the field
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of view in 3D space and 3D measurements are of great benefit to mapping and SLAM.

Figure 7.2: Usage of a Graph Convolutional Network (GCN) to predict exploration
target [2].

Recently, deep learning has gained popularity in robotics. A novel algo-

rithm that uses graph convolutional network (GCN) to improve the efficiency of

EM-exploration has been proposed [2]. The cubic computational complexity is re-

duced to constant time. A further development lies in the application of GCN in

reasoning about exploration target using pose-SLAM. As the key novelty of EM-

exploration is the utility function that combines uncertainty and map coverage, we

may regard the utility as a function of current states and derive the utility function,

or reward function, from inverse reinforcement learning [106].

In EM-exploraiton, we propose the concept of virtual landmarks; however their

locations are conservatively assumed to be consistent with cells in occupancy map.

If we are able to predict the most likely virtual landmarks, candidate paths could

be planed to effectively avoid obstacles and achieve better feature coverage. Two

possible ways to predict virtual landmarks are demonstrated in Figure 7.3. Deep

learning can be used to predict unobserved region given current surroundings [107].

Or a prior map could be provided from sources such as satellite images or previous

inspection mission.
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(a) Prediction of occupancy map[107]. (b) A prior map from satel-
lite image.

Figure 7.3: Two ways to improve virtual landmark prediction.
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