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INFERENCE WITH FACTOR GRAPHS FOR SINGLE AND MULTI-ROBOT

PERCEPTION AND NAVIGATION

ABSTRACT

Mobile robot perception and navigation have gained increasing attention in

recent years, driven in part by the growing focus on autonomous driving. However,

there are still challenges in both single and multi-robot scenarios, stemming from

challenging environmental conditions, limited communication bandwidth, and the

complexities of fostering efficient collaboration among neighboring robots. One valu-

able tool for addressing these challenges is the factor graph, a graph structure widely

employed for modeling probabilistic inference problems. In this thesis, we transform

common perception and navigation problems into factor graph optimization prob-

lems, offering innovative solutions that advance beyond the current state-of-the-art

barriers in both single and multi-robot scenarios.

To address specific challenges in underwater environments, we introduce a

Gaussian process motion planning algorithm tailored for unmanned underwater ve-

hicles (UUVs) engaged in seafloor terrain following missions, which incorporates the

influence of oceanic currents. Additionally, we present three distributed multi-robot

simultaneous localization and mapping (SLAM) algorithms for range-sensing mobile

robots. The first algorithm introduces a compact LiDAR descriptor, along with a two-

stage global and local factor graph optimization approach. The second introduces a

hierarchical scene graph for map data storage and utilizes scene graph matching for

efficient inter-robot data association. The third is a distributed SLAM framework for

underwater robot teams equipped with imaging sonar. This framework uses object

graph matching for inter-robot data association and proposes a robust outlier de-
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tection technique to enhance collaborative mapping in complex underwater environ-

ments. Furthermore, we propose an asynchronous autonomous exploration algorithm

designed for multi-robot teams. This algorithm utilizes a virtual map and employs

expectation-maximization (EM) to estimate the effectiveness of a robot’s potential

future actions.
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Department: Mechanical Engineering
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Chapter 1

Introduction

In recent years, mobile robots have gathered increased attention due to their great

potential across various domains, including search-and-rescue, infrastructure inspec-

tion, household services, as well as logistical and transportation applications. For

mobile robots, it’s crucial to have the ability to sense the surrounding environment

and make informed decisions incrementally towards a designated task. This dual ca-

pability, known as robot perception and navigation, encompasses the robot’s ability

to sense, understand, and interpret its surrounding environment through on-board

sensors. Subsequently, it involves making movement-related decisions, both short-

term and long-term, based on the information gathered from these sensors. A robust

implementation of perception and navigation system is pivotal for the efficient and

safe execution of robot tasks, including manipulation and human-robot interaction.

These capabilities serve as prerequisites, enabling the robot to adapt its movements

and actions to the unknown or partially known surrounding environments. In the

context of multi-robot scenarios, additional challenges arise, such as the need for

efficient task allocation and the management of limited communication bandwidth.

These factors become crucial considerations in the development of perception and

navigation systems for multi robot teams.

Figure 1.1: A classic factor graph representation with 4 factor nodes and 4 variables.
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A factor graph is a bipartite graph consisting of variables and factors. Figure

1.1 gives a simple example of a factor graph corresponding to the factorization of a

function g(x0,x1,x2):

g(x0,x1,x2) = f0(x0)f1(x0,x1)f2(x1,x2)f3(x0,x2), (1.0.1)

with each factor or variable represented by a node. Let g(·) be the joint probability

distribution over random variables {x0,x1,x2}; equation 1.0.1 indicates the factor-

ization of g(·) into a sum-product of a series of probability density functions f(·).

The graphical representation aligns well with the factorization nature inherent in

some probabilistic models such as Markov process and, notably, exhibits efficiency in

solving the maximum a posteriori problem.

In this thesis, we delve into the following facets of robot perception and naviga-

tion using the concept of factor graph: Motion Planning, Simultaneous Localization

and Mapping (SLAM) and Autonomous Exploration. Assume a mobile robot whose

trajectory is continuously sampled from a Gaussian process. The motion planning

problem can be converted into an optimization problem framed as a factor graph.

Here, the variable nodes correspond to the robot states, while the factor nodes, exclu-

sively linked to the variable nodes, represent the cost functions for obstacle avoidance

and specific motion planning tasks.

In real-world scenarios, sensor observations are often corrupted by noise, which

can be addressed by modeling the observations as random variables. For the SLAM

problem, we treat the states of the robot and landmarks as variable nodes, while

sensor observations are regarded as factor nodes, and Maximum A Posteriori (MAP)

state estimation can be formulated as an optimization problem on a factor graph.

For individual robots, inertial and odometry sensing are helpful tools to support the
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solution of this optimization problem, providing a foundation for the accurate han-

dling of measurement constraints linking perceptual observations that are distant in

time. However, handling such constraints becomes more challenging in multi-robot

SLAM, where we often lack an initial guess for describing how sensor observations

from different robots relate to one another. This problem can be addressed through

a combination of improved factor graph optimization, and by adopting data-efficient

descriptors that can be easily exchanged among robots to compare perceptual ob-

servations. Both avenues are considered in this thesis, and in our efforts to adopt

data-efficient descriptors, we consider both sensor descriptors, which compactly de-

scribe a single perceptual observation, and graph-based descriptors, which describe

the entirety of a robot’s past observations. To the best of our knowledge, this thesis

is the first work to apply graph-based descriptors to inter-robot place recognition in

multi-robot SLAM.

We further consider the autonomous exploration problem by framing it as a

future estimation problem constrained by a finite number of steps, tightly coupled

with a SLAM factor graph. The effectiveness of prospective actions is evaluated by

incorporating predictions of state and observations derived from these actions into

the SLAM factor graph. The contributions of this thesis are as follows, accompanied

by code that is publicly available:

• A factor graph based underwater motion planning framework that considers 3D

seafloor terrain, current flows, and energy efficiency[42]1.

• A distributed multi-robot SLAM framework intended for real-time use with 3D

LiDAR, and with a two-stage global-local factor graph optimization [40] 2.

1https://github.com/RobustFieldAutonomyLab/Mission-Oriented-GP-Motion-Planning.

git
2https://github.com/RobustFieldAutonomyLab/DiSCo-SLAM.git

https://github.com/RobustFieldAutonomyLab/Mission-Oriented-GP-Motion-Planning.git
https://github.com/RobustFieldAutonomyLab/Mission-Oriented-GP-Motion-Planning.git
https://github.com/RobustFieldAutonomyLab/DiSCo-SLAM.git
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• A distributed multi-robot SLAM framework for robots equipped with LiDAR

and camera sensors, which achieves a robust, general, and data-efficient SLAM

method through scene graph matching. [44]

• An enhanced multi-robot SLAM system for underwater environments that

achieves greater computational efficiency through object graph matching. [43]

• An asynchronous multi-robot exploration framework catering to both central-

ized and decentralized factor graph SLAM systems, taking into account efficient

task allocation for exploration and addressing map uncertainty [41] 3.

3https://github.com/RobustFieldAutonomyLab/Multi-Robot-EM-Exploration.git

https://github.com/RobustFieldAutonomyLab/Multi-Robot-EM-Exploration.git
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Chapter 2

Background

2.1 Gaussian Process Motion Planning (GPMP)

As an optimization-based planning method, Gaussian process motion planning (GP-

MP) [68], is a technique that models the set of states sampled from a smooth trajec-

tory connecting the starting and ending goals as a Gaussian process, and formulates

the motion planning problem as a nonlinear least squares problem. GPMP2 [22] for-

mulates the Gaussian process motion planning problem over a factor graph [23], which

is a graph representation of factorized functions of variables. The optimization prob-

lem is then solved using GTSAM [17], a toolkit for factor graph-based optimization

problems. GPMP is well-suited for the motion planning of robots since it can produce

efficient and safe paths for robots to follow. Moreover, GPMP is flexible and can be

adapted to different environments. STEAP [69] employs GPMP for simultaneous lo-

calization and planning and tests with a ground robot. SCATE [56] applies a similar

method to a spacecraft, demonstrating its applicability beyond terrestrial robots. In

[67], GPMP is utilized to solve 2D path planning problems for an Unmanned Surface

Vehicle (USV) aiming to avoid areas with high current flow velocities. Furthermore,

GPMP has been used to solve multi-robot planning problems [72, 74].

In a classical Gaussian process motion planning problem, given a collection of

timestamps t = [t0, · · · , tk]⊺, the robot trajectory θ = [θ0, · · · , θk]⊺ could be expressed

as a joint Gaussian distribution N (µ,Ω)[68], with

µ = [µ0, · · · , µk]
⊺,Ω = [Ωij]i×j|i,j∈[0,k],i,j∈N. (2.1.1)
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µi is the mean of the robot state at timestamp ti, while Ωij is the covariance matrix of

the robot states at timestamp ti and timestamp tj. At each state, θi, the probability

of colliding with obstacles is P (ui|θi). Given the collision cost function hc(θ) with

covariance Σc, define the negative log-likelihood function of Lc(θi):

Lc(θi) = hc(θi)
⊺Σchc(θi). (2.1.2)

A motion planning problem considering obstacle avoidance can be represented as a

maximum a posteriori estimation problem [22]:

θ∗ = argmax
θ
{P (θ)

k∏
i=1

P (ui|θi)} (2.1.3)

= argmin
θ
{(θ − µ)⊺Ω(θ − µ) +

k∑
i=1

Lc(θi)}, (2.1.4)

where P (θ) is the prior distribution with θ ∼ N (µ,Ω). Gaussian process motion

planning aims to find a collision-free path that minimizes the total obstacle collision

cost.

2.2 Multi-Robot Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) is a fundamental capability in robot

navigation, in which a mobile robot maps an unknown environment, while using rel-

ative measurements of that environment as the basis for localizing itself. Although

many successful single-robot SLAM solutions have been proposed, fast and accurate

scene reconstruction with a robot team remains an open problem. In multi-robot

SLAM, a group of robots traverse an unknown environment and build a map cooper-

atively, by exchanging information. Cooperative robot teams have the potential to be
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more efficient than a single robot in time-sensitive tasks, such as search- and-rescue,

infrastructure inspection, household services, and logistical and transportation appli-

cations.

Let N = {1, 2, · · · , n} be the set of n robots. For each robot α ∈ N , we denote

its state at timestamp i as xα,i. The robot odometry observation between present

state xα,i and previous state xα,i−1 is described by the equation:

zα,i−1
α,i = f(xα,i−1,xα,i) + ϵα,i−1

α,i . (2.2.1)

For landmark SLAM, assume robot α observes a landmark state lj at timestamp i,

we can describe the landmark observation:

zα,ij = g(xα,i, lj) + ϵα,ij . (2.2.2)

If another robot β is observed at timestamp i by robot α,we refer to this as a robot

rendezvous observation:

zα,iβ,j = f(xα,i,xβ,j) + ϵα,iβ,j, (2.2.3)

where f(·) denotes the state transformation between robot states, g(·) is the state

transformation from robot state to landmark state, and ϵα,i−1
α,i , ϵα,ij and ϵα,iβ,j are zero-

mean Gaussian noise variables.

At present timestamp t, X = {xα
i |α ∈ N, i ∈ [0, t]} represents the set contain-

ing the states of all n robots from the initial timestamp 0 to the present timestamp t.

L = {l0, l1, . . . , lm} is the set of landmarks observed until timestamp t. Additionally,

let Z be the set containing odometry observations, landmark observations and robot

rendezvous observations from all timestamps. The SLAM problem can be framed as a
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maximum a posteriori estimation problem[50] in the landmark-based SLAM format:

X ∗,L∗ = argmax
X ,L

P (X ,L|Z), (2.2.4)

= − argmin
X ,L

log(P (X ,L|Z))︸ ︷︷ ︸
cost function F(X ,L)

. (2.2.5)

In pose-graph SLAM where landmarks are not explicitly considered, the expression

for maximum a posteriori estimation can be formulated as follows:

X ∗ = argmax
X

P (X|Z), (2.2.6)

= − argmin
X

log(P (X|Z))︸ ︷︷ ︸
cost function F(X )

. (2.2.7)

A critical problem for multi-robot SLAM is the optimization of inter-robot con-

straints. Centralized methods [25, 81, 20, 53, 103], which collect all messages from

local robots using a global server, can easily handle this task by optimizing all mea-

surements in one factor graph. Distributed methods maintain several graphs across

robots, making it harder to resolve ambiguities arising among them. In the widely-

used distributed Gauss-Seidel (DGS) approach [12], each robot optimizes its own

graph, considering other robots only when there are overlapping constraints. DDF-

SAM [15] optimizes a local pose graph and constrains these local graphs using a

constrained factor graph (CFG) containing shared landmarks among robots. DDF-

SAM 2.0 [16] uses a decision tree in both local and neighbor graphs to avoid double-

counting measurements. Tian [92] proposes Riemannian Block-Coordinate Descent

(RBCD), which achieves a better convergence than the DGS method by solving a

rank-restricted relaxation of the pose graph optimization problem [83].
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2.2.1 Multi-Robot SLAM with Scene Graphs

Scene graphs, initially introduced by the computer vision community as a seman-

tic image retrieval technique [48], have gained increasing attention in robotics due

to their potential in enhancing human-robot interactions [84]. The introduction of

scene graphs into the multi-robot SLAM problem offers additional benefits. Scene

graphs are more data-efficient for communication between team members and, unlike

compact sensor descriptors, provide a global and structured representation of the en-

vironment. In robotics, SLAM with scene graphs refers to a SLAM approach that

processes sensor measurements as input and incrementally generates a scene graph

(in addition to maps) as output. The scene graph commonly adopted in robotics is

a 3D scene graph [1], which uses a graph-based structure to represent the seman-

tic information of a 3D model of the environment. Unlike semantic maps [26, 5], a

scene graph not only encapsulates the semantic details of the environment but also

explicitly describes the relationships between semantic entities.

There are many single-robot or multi-robot SLAM works with scene graphs

using visual sensors. However, these works focus on indoor environments due to the

relatively low sensor range of RGB-D cameras. Kimera [84] and Hydra-multi [8] em-

ploy an RGB-D camera to sense the environment and incrementally improve scene

graph construction accuracy using SLAM results. Radwan et al. [79] introduce visual

fiducial markers to enable scene graph construction in under-construction environ-

ments. MR-COGraphs [38] proposes a learning-based, data-efficient visual feature

method for inter-robot data association in multi-robot SLAM systems. The only

exception is Multi S-graphs [31], which includes LiDAR in the multi-robot SLAM

system. However, they use specific room-based compact descriptors for inter-robot

association, which only work in indoor environments.
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There are also LiDAR-based SLAM works with scene graphs in outdoor en-

vironments. For example, Greve et al. [37] and Deng et al. [18] construct scene

graphs for outdoor environments using semantically labeled LiDAR scans. However,

in these works, the scene graph serves only as a product, and its graph structure

does not directly contribute to intra- or inter-robot loop closure detection in SLAM

systems. In addition, it overlooks the crucial problem of inter-robot data association

by assuming known robot initial positions (from GPS). This assumption makes these

methods unsuitable for indoor environments where GPS signals are unavailable.

2.2.2 Multi-Robot SLAM for underwater environments

One key challenge that makes the underwater multi-robot SLAM problem unique,

compared to other SLAM problems, is the limited communication bandwidth result-

ing from the marine environment. To address this constraint, Bonin-Font et al. [4]

and MAM3SLAM [24] propose centralized algorithms, where a server handles all

inter-robot data association and optimization under the assumption of “a powerful

server without communication restrictions”. However, these methods are only tested

on small-range datasets due to the communication bandwidth degradation as robots

move farther from the server.

Zhang et al. [102] avoids the communication problem by employing a dis-

tributed local SLAM data collection approach combined with a GMRBnB-based map

registration strategy, similar to the multi-session SLAM frameworks [6, 98]. While

these methods are effective for bathymetric mapping tasks, they are less suitable for

real-time decision-making applications, such as active planning and exploration.

Paull et al. [73] consider a scenario where robots observe one another and share

their landmark observations. In their approach, both landmark and robot states are

optimized in a distributed manner across team members using a graph-based repre-
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sentation. Özkahraman et al. [71] explore a similar situation, intentionally designing

robot rendezvous strategies to achieve more accurate localization in environments

where landmarks are absent. However, achieving robot rendezvous is challenging,

particularly for long-term missions, due to factors such as the vastness of marine

environments, unpredictable oceanic currents, and time synchronization issues.

In this thesis, we adopt the communication assumptions described in DRACo-

SLAM [66], where robots can communicate with each other (at low bandwidth, using

wireless acoustic communication) when within a relatively long distance range. This

assumption enables the real-time estimation of both self and neighbor robot states

across a relatively large environment.

Another key consideration is the inter-robot data association or map merging

strategy for multi-robot teams. Most approaches rely on extracting visual features

from camera or sonar images. Bryson et al. [6] extract SIFT features from camera

images and perform inter-robot structure-from-motion (SfM). Bonin-Font et al. [4]

also extract SIFT features from camera images but utilize HALOC as the feature

descriptor. MAM3SLAM [24] extracts ORB features and associates keyframes using

DBoW2. Zhang et al. [102] and Gaspar et al. [34] extract ORB features from

sonar images and adopt a similar visual vocabulary strategy. While these feature-

based methods are straightforward, their high-dimensional feature descriptors place

significant demands on communication bandwidth.

To alleviate the communication bandwidth burden caused by high-dimensional

feature descriptors, some methods use compact features to represent entire visual or

sonar images. Paull et al. [73] extract mine-like objects from sonar images and ex-

change their positions among team members. Santos et al. [85] extract objects from

sonar images and utilize scene graphs to describe and match sonar data. DRACo-

SLAM [66] and Sonar-context [55] represent sonar images with compact sonar descrip-
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tors for efficient data exchange and loop closure candidate detection. While compact

features significantly reduce the bandwidth required for inter-robot data exchange,

they can lead to errors in regions with repeating patterns (i.e., perceptual aliasing).

Some methods perform data association using features extracted from a larger

submap to further mitigate perceptual aliasing. Wang et al. [97] apply the DBScan

algorithm to cluster and describe the shapes of oil spills in the ocean. Deng et al. [19]

utilize a deep learning-based encoder-decoder structure for point cloud transmission.

Qi et al. [77] employ a terrain description feature to characterize submaps and match

them using a genetic algorithm (GA). However, the GA process is computationally

expensive and challenging to tune.

Other methods focus on robust loop closure outlier detection algorithms. Most

approaches use a RANSAC strategy for map merging. DRACo-SLAM [66] uses pair-

wise consistent measurement set maximization (PCM) [65] to reduce outliers intro-

duced by repeating patterns. However, despite its emphasis of measurement con-

sistency, PCM is not robust to outliers characterized by high data similarity. To

address this issue, Do et al. [21] propose a probabilistic approach specifically tailored

for underwater scenarios to robustly reject outliers by seeking both consistency and

similarity.

2.3 Multi-Robot Autonomous Exploration

Autonomous exploration and mapping describes a single robot or a group of robots

navigating themselves in an unknown or partially known environment without human

intervention. An accurate environment map constructed by the robots serves as the

fundamental basis for all subsequent specific robot tasks [75].

Autonomous exploration and mapping have been a vigorously discussed sub-
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ject for several decades. Early research has primarily centered around optimizing task

distribution among team members [7, 32]. As Simultaneous Localization and Map-

ping (SLAM) techniques have advanced, various approaches [47, 101, 2, 57, 14] have

incorporated the concept of map uncertainty into autonomous exploration. These

strategies consider Gaussian noise sensor models and Gaussian noise kinematic mod-

els, aiming to strike a balance between exploration efficiency and managing uncer-

tainties in the resulting maps. Although these techniques may differ in terms of their

map representation and merging techniques, they share a similar utility function that

takes into account both the information gain of the latest generated map and the

required travel distance to the waypoints under consideration.

In multi-robot exploration, the communication arrangement of the robot sys-

tem holds significance. Charrow et al. [9] examines the exploration of a small area

using a team of robots equipped with range-only sensors using a coordinated ap-

proach. Although a centralized system maximizes the utilization of data collected by

robot teams, it experiences increased computation challenges as the size of the robot

team expands. Numerous algorithms, such as [7], [2], [13], [80], [86] and [10] adopt

a decentralized approach. In this approach, robots exchange a significant portion

of their historical data while independently making decisions based on their most

recent knowledge of the environment. The asynchronous nature of the decentral-

ized system reduces the communication and computational load in comparison to

a scenario involving a centralized computer. However, it can still face limitations

imposed by the communication range of the robot team. Additionally, there exist

distributed approaches, discussed in [32], [61], [33], [52] and [36], in which robots

communicate only when they encounter each other, adhering to constraints on com-

munication bandwidth. Their decisions depend on the limited information available

from both the robot team and the environment. Such distributed approaches are
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designed for scenarios involving larger robot teams with constrained communication

bandwidth, although they may involve some performance trade-offs to accommodate

these conditions.

Another critical factor to consider is the criteria utilized for action selection.

In earlier approaches such as [7], [32], the primary emphasis was on efficiently dis-

tributing tasks among team members. Later, the “Next Frontier” [13] introduced

the concept of information potential to improve exploration efficiency. Jang et al.

[47] utilize a Gaussian processes to characterize the environment, enabling obstacle

avoidance and task allocation for a team of robots. In NeuralCoMapping [99], a mul-

tiplex graph neural network is introduced to strike a balance between long-term and

short-term performance optimization. Tzes et al. [94] present a novel approach that

integrates the exploration under uncertainty problem into a learning framework using

graph neural networks (GNNs).

Given the uncertainty inherent in both robot control and sensing, some authors

incorporate uncertainty into the exploration problem. Kontitsis et al. [57] incorporate

Relative Entropy into the utility function when dealing with a partially known map to

reduce localization uncertainty. Similarly, in [70], the authors perform joint entropy

minimization to actively explore over a long-term horizon. Other researchers utilize

filter-based techniques to address the uncertainty associated with future steps. In the

work by Atanasov et al. [2], a square-root information filter is employed to predict the

impact of future actions. Schlotfeldt et al. [86] adopt a similar filter-based approach

within a decentralized system. Meanwhile, Kantaros et al. [52] present a sampling-

based method aimed at reducing cumulative uncertainty stemming from dynamic

hidden states. Indelman [45] presents an approach that employs belief propagation

to anticipate the performance of robot teams in future actions. Chen [11] considers

graph topology when making action selections.
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Chapter 3

Mission-oriented Gaussian Process Motion Planning

3.1 Mission-oriented GPMP for UUVs over Current Flows

As mentioned in section 2.1, the problem of motion planning with obstacle avoidance

can be formulated as a maximum a posteriori estimation problem. However, for

underwater environments, some motion planning tasks require more than seeking the

minimum-time collision-free path. We introduce a set of mission-related objectives

with joint probability of P (mi|θi) into equation (2.1.3):

θ∗ = argmax
θ
{P (θ)

k∏
i=1

P (ui|θi)P (mi|θi)}. (3.1.1)

This section addresses several considerations relevant to Unmanned Underwater Ve-

hicles(UUV) missions: seafloor terrain-following within a specified altitude envelope,

obeying the kinematics of a specific UUV, and the influence of current flows on a

UUV. P (mi|θi) is rewritten as:

P (mi|θi) = P (si|θi)P (ri|θi). (3.1.2)

We define θi = [xi, ẋi], xi ∈ SE (3) and ẋi as the pose and velocity at timestamp ti.

P (si|θi) indicates whether the present state obeys the specified maximum altitude

relative to the seafloor. P (ri|θi) is the probability corresponding to robot kinematics.

The negative log-likelihood function of P (mi|θi) has a similar definition as in equation
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(2.1.2):

Lm(θi) = hs(θi)
⊺Σshs(θi) + hr(θi)

⊺Σrhr(θi). (3.1.3)

hs(·), hr(·) and Σs, Σr are the cost functions and covariances of our mission objec-

tives. Finally, we perform factor graph optimization using the Dogleg method [17]

to solve the mission-constrained motion planning problem, we term Mission-oriented

GPMP (MGPMP), as a maximum a posteriori estimation problem:

θ∗ = argmax
θ
{P (θ)

k∏
i=1

P (ui|θi)P (si|θi)P (ri|θi)} (3.1.4)

= argmin
θ
{(θ − µ)⊺Ω(θ − µ) +

k∑
i=1

{Lc(θi) + Lm(θi)}. (3.1.5)

3.2 MGPMP Algorithm

We tackle the motion planning problem by formulating it as a nonlinear least squares

problem, using a factor graph, with a starting state θ0 and a goal state θk. In the

time period between the starting time t0 and ending time tk, a set of k timestamps

{t0, ..., tk}⊺ is sampled, with a time interval of ∆t. At each timestamp ti, there is

a corresponding support state θi = [xi, ẋi], where xi and ẋi are treated as separate

vertices vxi
and vẋi

in the factor graph.

Figure 3.1 shows the factor graph structure of the proposed method. The

neighbor pose (blue circle) and velocity (green circle) vertices at each timestamp are

linked by GP prior factors, GP obstacle avoidance factors, and GP seafloor following

factors. There are obstacle avoidance and seafloor following factors linked to each

pose vertex. Kinematic constraint factors are linked to the velocity vertices. Similar

to GPMP2 [22], prior and cost functions are represented by factors f(·) connected to
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Figure 3.1: Factor graph structure of the proposed method.

vertices. We add a Gaussian prior to each pose vertex vxi
and velocity vertex vẋi

sep-

arately. GP constant speed prior factors considering current flows are introduced to

neighboring support states to ensure smooth and efficient optimization. We describe

the underwater environment and compute the collision cost at each support state

using a signed distance field (SDF) [105]. Then, we add obstacle avoidance factors to

pose vertices, and GP obstacle avoidance factors between adjacent pose and velocity

vertices to ensure a continuous, collision-free trajectory.

In this problem, the missions mentioned in section 2.1 are also represented

by factors. The seafloor terrain following mission requires the robot to maintain a

certain distance from the seafloor. To achieve this, we add seafloor-following factors

to the graph. These factors calculate the robot’s distance-to-seafloor costs at all robot

states and between neighboring states, using both Gaussian and GP seafloor-following

factors. Another mission aims to minimize the effect of water currents while taking

the robot’s kinematics model into account. To simulate the robot’s kinematics on

each support state, we introduce a robot kinematic constraint factor. Additionally,

when calculating the robot’s inter-states for GP factors, we consider the influence of

water currents on the robot.
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3.2.1 Gaussian Prior and GP Constant Speed Prior

In Section 2.1, we stated that the robot state θ can be represented as a joint dis-

tribution with mean and covariance as given in equation(2.1.1). Assuming that the

support state θi at timestamp ti is only correlated with the support state θi−1 at

previous timestamp ti−1, we can represent Ω as a symmetric matrix:

Ω =



Ω11 Ω12 0 . . . 0

Ω12 Ω22
. . .

...

0
. . . . . . . . . 0

...
. . . Ωk−1k−1 Ωk−1k

0 . . . 0 Ωk−1k Ωkk


. (3.2.1)

Additionally, we assume that the pose xi and velocity ẋi at any timestamp i are not

correlated:

θi ∼ N (µi,Ωii) (3.2.2)

µi =

µxi

µẋi

 ,Ωii =

Ωxixi
0

0 Ωẋiẋi

 . (3.2.3)

Gaussian prior factor fp(xi) ∼ N (µxi
,Ωxixi

) and fp(ẋi) ∼ N (µvi ,Ωẋiẋi
) are introduced

at vxi
and vẋi

to describe the prior distribution of support state θi. Given the water

current speed ui−1 at position xi−1, and assuming a linear current speed model, we

approximate the neighbor states’ kinematics with a simple constant speed model:

x⊺
i−1 · xi = ∆t · (ẋi−1 + ui−1) (3.2.4)

ẋi = ẋi−1. (3.2.5)
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Based on the constant speed model, we obtain the GP constant speed prior factor

fcs(xi−1, ẋi−1, xi, ẋi) ∼ N (0,Ωcs) with cost function:

hcs(xi−1, ẋi−1, xi, ẋi) =

x⊺
i−1 · xi −∆t · (ẋi−1 + ui−1)

ẋi − ẋi−1

 . (3.2.6)

In equation (3.2.1), for every timestamp i within the range [0, k), we have Ωii+1 = Ωcs.

The covariance Ωcs is a pre-defined constant parameter across all timestamps.

3.2.2 Obstacle Avoidance with Signed Distance Field

Two kinds of obstacle avoidance factors are included in the graph: the Gaussian obsta-

cle avoidance factor fc(xi) and the GP obstacle avoidance factor fc(xi−1, ẋi−1, xi, ẋi).

Accordingly, ∀θi = [xi, ẋi],

hc(θi) = hc(xi) + hc(xi−1, ẋi−1, xi, ẋi). (3.2.7)

Both factors are computed using a signed distance field (SDF) [105]. To gen-

erate an SDF model, a binary grid map b is used, where 1 represents occupied grid

cells and 0 represents free space. A Euclidean distance map d(b) is then generated

by computing the distance to the nearest occupied cell for each grid cell in the map.

We define a negative grid map b̄ = J − b, where J is a matrix of ones, and generate

a corresponding Euclidean distance map d(b̄). An SDF model can be obtained as

D(b) = d(b)− d(b̄). To simplify the notation, we denote the value of the pth grid cell

in the SDF model as D(b(p)).

With a pre-defined threshold dmin, indicating the smallest signed distance al-

lowed, and pi denoting the translational part of pose vertex xi, the cost function of
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the Gaussian obstacle avoidance factor fc(xi) can then be defined:

hc(xi) =


0 D(b(pi)) > dmin

dmin −D(b(pi)) D(b(pi)) ≤ dmin

. (3.2.8)

The GP obstacle avoidance factor, which is especially essential for robot naviga-

tion near seafloor terrain, is constructed by considering both robot kinematics and col-

lision detection. For each pair of neighboring support states, denoted by {θi−1, θi} ⊂

θ, a group of n intermediate states are uniformly interpolated by Finter(θi−1, θi). [22]

gives a detailed description of how intermediate states are generated. As we are em-

ploying a linear speed model for both water current and inter-states interpolation, we

account for the effect of the water current by taking into consideration the current

speed at two neighboring states. Let {x1
i , ..., x

n
i } = Finter([xi−1, ẋi−1+ui−1], [xi, ẋi+ui])

be poses of intermediate states between θi−1 and θi considering the water current

speed, and in turn, the cost function for GP obstacle avoidance factors can be ex-

pressed:

hc(xi−1, ẋi−1, xi, ẋi) =
n∑

j=1

hc(x
j
i ). (3.2.9)

Figure 3.2 illustrates the significance of taking GP obstacle avoidance factors

into account. Blue circles indicate the robot’s position, and green arrows show the

robot’s velocity at different timesteps. Specifically, in figure 3.2a, when only Gaussian

obstacle avoidance is considered at each support state, the robot may attempt to

maintain the same speed between two adjacent states due to the GP constant speed

prior. This can create a potential collision risk between two states. On the other hand,
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(a) Example with only obstacle avoidance and
constant speed GP prior.

(b) Example with obstacle avoidance and cur-
rent velocity at each timestep.

Figure 3.2: A simple 2D example illustrating robot kinematics-based GP interpolation
and the impact of water current velocity on obstacle avoidance.

figure 3.2b considers both factors and adjusts the velocity of one state to ensure a

smoother, collision-free trajectory.

3.2.3 Seafloor Terrain Following

Similar to the obstacle avoidance constraints mentioned in section 3.2.2, the cost

function of seafloor terrain following shown in equation (3.1.3) consists of Gaussian

and GP parts:

hs = hs(xi) + hs(xi−1, ẋi−1, xi, ẋi). (3.2.10)

To implement GP seafloor-following, we adopt a similar approach as described in

Section 3.2.2 to interpolate n intermediate states between adjacent states subjected to

currents. Consequently, the cost function for GP seafloor-following can be represented

as the sum of costs for all intermediate states:

hs(xi−1, ẋi−1, xi, ẋi) =
n∑

j=1

hs(x
j
i ), (3.2.11)
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with {xj
i |j ∈ [1, n], j ∈ N} representing the set of poses for all n intermediate states.

We represent the seafloor terrain using a 2D grid map M generated from

bathymetric data of the seafloor terrain. Let M(pi) be the seafloor depth linear-

interpolated from grid map M at point pi. The Gaussian seafloor-following cost

function at pose xi with position pi is thus defined:

hs(xi) =


0 M(pi) ≤ dmax

σ(M(pi)− dmax) M(pi) > dmax

, (3.2.12)

where dmax is the maximum allowable altitude, and σ(.) is the Sigmoid function. The

Seafloor Safe ZoneSDF Danger Zone

Actual Seafloor

Figure 3.3: An example showing how the obstacle avoidance cost and the seafloor
following cost conflict with each other.

conflict between the seafloor terrain following factor and obstacle avoidance factor in

areas with complex seafloor terrain makes this problem particularly interesting. In

figure 3.3, an example is shown where these two factors compete, and the conflict

requires the algorithm to find an acceptable balance. The dark blue arrows repre-

sent obstacle avoidance factors, which aim to move the robot away from the seafloor,

while the light blue arrows represent seafloor following factors, which pull the robot

towards them. Furthermore, if a mission involves diving up and down around the

starting and goal positions, the optimizer must balance between the constant speed
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constraint and the seafloor following constraint. In contrast to sampling-based mo-

tion planning methods, Gaussian Process motion planning considers constraints as

objective functions for optimization rather than state validity checks.

3.2.4 Robot Kinematics and the Influence of Current Flows

In this section, we consider a kinematic model for a standard, underactuated UUV,

with specific parameters inspired by the Bluefin -211. The model presents a 5-DoF

point robot with a constraint that limits the robot’s motion along the body y-axis.

We impose a simple kinematic constraint on the robot at each speed vertex vẋi
, where

FgetY(.) returns the y velocity component of robot body frame Fθi−→
at state θi:

hr(θi) = FgetY(ẋi). (3.2.13)

A notable aspect that sets our method apart from the original GPMP2 method is the

incorporation of current flows, a disturbance that can greatly influence the motion

of underwater robots. To incorporate current flows, we utilize a 3D grid matrix

representation of water current speeds on different layers c, where each grid element

denotes the water current speed at the center of the cell, in the horizontal plane defined

by each layer. We focus on the current velocity in horizontal planes since it has the

most significant impact on robot motion. A linear interpolation model is employed to

acquire the velocity of the current at different locations, enabling effective querying

and interpolation of water current speed. The velocity-related constraint factors in

figure3.1 are primarily affected by the water current. Hence, we incorporate the

influence of water current into our generation of all GP-related factors.

We take into account the influence of water current velocity when computing

1https://gdmissionsystems.com/underwater-vehicles/bluefin-robotics

https://gdmissionsystems.com/underwater-vehicles/bluefin-robotics
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the GP constant speed constraints and the GP inter-state interpolation, as discussed

in section 3.2.1 and section 3.2.2. We first define the current speed at state θi by

interpolating over the 3D current grid, denoting it as u(pi), where pi represents the

translation of θi. Next, we project u(pi) from the pre-defined global frame Fg−→
to

the local frame Fθi−→
using the transformation matrix Tθig, which results in θiu(pi),

indicating the water current speed at position pi in the local robot body frame at θi:

θiu(pi) = Tθig · u(pi). (3.2.14)

The cost function of the GP constant speed prior factor in equation (3.2.6) is then

rewritten as:

hcs(xi−1, ẋi−1, xi, ẋi) =

x⊺
i−1 · xi −∆t · (ẋi−1 + θiu(pi))

ẋi − ẋi−1

 . (3.2.15)

And we generate the inter-states using the function Finter while taking into account

the effect of water current:

{x1
i , ..., x

n
i } = Finter([xi−1, ẋi−1 + θi−1

ui−1)], [xi, ẋi + θiui]). (3.2.16)

3.3 Experiments

3.3.1 Experimental Setup

We conducted comparative motion planning experiments over four example environ-

ments consisting of seafloor terrain and multi-layer current grid maps. We refer to the

four environment datasets as follows: (1) the Queen Elizabeth Islands dataset, (2) the

Governors Island dataset, (3) the NYC lower bay dataset, and (4) the NYC upper bay



25

dataset. The Queen Elizabeth Islands dataset was obtained from underwater seafloor

terrain models provided through DARPA’s Symbiotic Design for Cyber Physical Sys-

tems (SDCPS) program. Bathymetry data provided by the National Oceanic and

Atmospheric Administration (NOAA)2 was used to resample the seafloor terrain grid

map for the other three datasets. The multi-layer current grid maps were resampled

from current flow data obtained from the Stevens Flood Advisory System at Davison

Laboratory3. The current grid map used in the experiments was time-invariant, but

could be modified to a time-variant current grid with minor changes. Additionally,

we sized datasets (1) and (2) to create confined, challenging situations for testing

obstacle avoidance capabilities.

We compared our proposed method with two state-of-the-art motion planning

methods: RRT* [62] and STOMP [51]. The RRT* implementation from OMPL [90]

was used, and both our proposed method and the RRT* implementation utilized a six

DoF sphere robot model with a sphere safe zone of radius 1m. A kinematic constraint

was applied to the y-axis of the robot frame, such that v⃗y = 0. On the other hand,

STOMP used a point-robot model, and no kinematic constraint was applied. In

MGPMP, the initial and final states have zero linear and angular velocities along

all axes. The covariance matrix Σr of kinematics constraints is set to the identity

matrix of size 6x6 (I6). We define dmin = 1 and the covariance matrix Σc = 0.1 · I6

for collision avoidance constraints. For seafloor terrain following constraints, we set

dmax = 2 and the covariance matrix Σs = I6. STOMP and RRT* employ the identical

range limits (dmin and dmax) as MGPMP and use the inverse covariance matrix as a

weight for the objective function. All experimental comparisons were performed on a

laptop computer equipped with an Intel Xeon E-2276M CPU and 31.1 GB memory

2https://www.ncei.noaa.gov/maps/bathymetry
3https://hudson.dl.stevens-tech.edu/sfas

https://www.ncei.noaa.gov/maps/bathymetry
https://hudson.dl.stevens-tech.edu/sfas
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running Ubuntu Linux 20.04. GPUs were not utilized in our experiments. In the

rest of this section, we test the MGPMP algorithm under three conditions: collision

avoidance (section 3.3.2), collision avoidance with seafloor terrain following (section

3.3.3), and a combination of collision avoidance, seafloor terrain following, and current

flows (section 3.3.4).

3.3.2 Performance of Collision Avoidance

Benchmark Setup

We compare MGPMP, RRT* and STOMP with different number of states, using the

Governors Island Dataset and Queen Elizabeth Islands dataset, which have obstacles

between the start and goal states. Both methods are initialized with a straight-line

trajectory connecting the starting and ending states. MGPMP and STOMP were

tested with different numbers of states (10 and 30) , initialized with a straight-line

trajectory. For MGPMP, we only considered SDF-based GP obstacle avoidance and

kinematic constraints, and we sampled one interpolation pose between two nearby

states for obstacle avoidance. The STOMP method solved only a 3D problem and

used an obstacle function that only considered SDF-based obstacle avoidance. A

limit of 10000 iterations was set for both methods. We also tested RRT* with two

different objective functions: a single objective with only path length, denoted as

“RRT* single”, and a multi-objective version that included path length, kinematics

constraints, and SDF-based obstacle avoidance, denoted as “RRT* multi”. We set

the termination time for the RRT* methods to 60 seconds to ensure enough time for

a near-optimal result. Since RRT* and STOMP are not deterministic methods, we

repeated each experiment 30 times.
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Performance Analysis

The results presented in Table 3.1 show the mean of the 30 trials.

Table 3.1: Performance of Collision Avoidance

Dataset Method Config
Run Time

(s)
Traj Length

(m)

Governors
Island

MGPMP
10 0.09 36.81

30 0.41 43.03

STOMP
10 0.83 29.65

30 2.43 34.50

RRT*
single 60 33.69

multi 60 46.04

Queen
Elizabeth
Islands

MGPMP
10 0.20 71.25

30 0.75 73.66

STOMP
10 - -

30 2.37 73.31

RRT*
single 60 72.67

multi 60 85.77

Figure 3.4 and figure 3.5 illustrates the performance of different methods with

varied parameterizations. All the methods succeed for the Governors Island dataset

(figure 3.4). Our proposed method prioritizes safety over trajectory length compared

to STOMP and RRT*, which favor shorter paths. However, for the Queen Elizabeth

Islands Dataset (figure 3.5), STOMP with only 10 states fails to generate a collision-

free trajectory because it considers obstacle avoidance at each state, but not for the

trajectory connecting neighboring states. Thus, smaller state numbers increase the

risk of collision for STOMP. RRT* with a single objective function offers the safest

result, but at the cost of a 20% longer trajectory. Performance is also quantitatively

evaluated in terms of runtime (in seconds) and total trajectory length (in meters) for
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Figure 3.4: Performance of varied states of different methods on the Governors Island
Datasets.

Figure 3.5: Performance of varied states of different methods on the Queen Elizabeth
Islands Datasets.
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each method, and the number of states used, in Table 3.1. For collision avoidance,

MGPMP is the fastest method for both datasets, regardless of the number of states

used.

3.3.3 Performance of Seafloor Terrain Following

Benchmark Setup

We simultaneously perform a seafloor terrain following mission and search for a

collision-free trajectory using MGPMP, RRT*, and STOMP. We test these meth-

ods on the NYC Lower Bay and Upper Bay Datasets with horizontal map cell sizes

of 0.1m, 1m, and 10m, as well as the Queen Elizabeth Dataset. We apply similar

settings as in section 3.3.2 for all three methods, with the addition of a seafloor ter-

rain following constraint to the cost function. For MGPMP and STOMP, we vary

the number of states used for testing, selecting 30 and 100 for smaller datasets and

50 and 200 for larger datasets. The maximum time allowed for RRT* multi is 120

seconds. The quantitative results of various methods are shown in Table 3.2. Ad-

ditionally, we introduce the mission violation rate (denoted as Violation Rate) and

average mission violation distance (denoted as Avg. Violation Distance) to assess the

performance of different methods on the seafloor terrain following mission. The mis-

sion violation rate refers to the proportion of states that fail to meet the requirements

of the seafloor terrain following mission. The average violation distance represents

the average violation of the max. allowable altitude, over the states that violate the

mission.
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Table 3.2: Performance of Seafloor Terrain Following

Method Config
Run

Time (s)
Traj Length

(m)
Violation
Rate (%)

Avg Violation
Distance (m)

NYC Lower Bay

MGPMP
50 1.28 1358.24 75 0.52

200 7.21 1357.95 43 0.36

STOMP
50 0.01 1357.75 87 2.60

200 0.02 1357.67 86 2.75

RRT* multi 120 1652.40 74 1.99

NYC Upper Bay 0.1

MGPMP
30 0.30 88.56 29 (9) 2.97 (0.82)

100 1.59 90.06 19 (3) 3.04 (0.98)

STOMP
30 0.43 81.46 25(18) 1.62 (0.73)

100 6.48 89.86 27 (24) 0.77(0.57)

RRT* multi 120 92.73 47 (33) 2.96 (2.26)

NYC Upper Bay 1

MGPMP
30 0.92 828.19 26 (13) 4.72 (1.83)

100 3.51 839.12 14 (6) 3.54 (0.60)

STOMP
30 1.56 806.76 33(26) 1.75 (0.60)

100 9.98 809.54 22 (20) 1.12 (0.61)

RRT* multi 120 875.23 47 (30) 3.51 (2.00)

NYC Upper Bay 10

MGPMP
50 2.12 8199.14 12 (8) 3.37 (0.31)

200 7.01 8691.11 3 (2) 8.34 (7.09)

STOMP
50 - - - -

200 - - - -

RRT* multi 120 9092.89 38 (36) 4.04 (3.68)

Queen Elizabeth Island

MGPMP
30 0.39 77.44 68 11.51

100 1.05 108.34 80 9.93

STOMP
30 - - - -

100 - - - -

RRT* multi 120 82.76 73 19.28
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Performance Analysis

Figure 3.6 displays the performance on the NYC lower bay dataset. In the side view,

the brown area represents a cross-section of the straight vertical path connecting the

start and goal states and the seafloor terrain. As this environment lacks obstacles,

all methods succeed with a relatively low violation rate.

Figure 3.6: 3D and side view of the New York City (NYC) Lower Bay Dataset.

Figure 3.7 illustrates the performance on the NYC upper bay dataset with

various map cell sizes, with different map scales, with “MGPMP 30” denoting results

achieved using MGPMP with 30 states. In this experiment, the designated start

and goal states both violate the threshold for the seafloor terrain following mission.

To assess the completion of the seafloor terrain mission more precisely, two sets of

violation metrics are calculated. One set includes the areas near the start and goal

states (outside brackets), while the other excludes them (inside brackets). STOMP

successfully discovers the global optimal trajectory with a small horizontal cell size of

0.1m. However, it fails for the map with 10m cell size. Our proposed method achieves
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success across all map sizes, ensuring reliable solutions.

Figure 3.7: Plan view of the performance of varied states of different methods on the
NYC Upper Bay Dataset.

Figure 3.8 displays the outcomes obtained on the Queen Elizabeth Islands

Dataset, which is a significant challenge due to the conflicting nature of the SDF-

obstacle avoidance constraint and the seafloor terrain following mission constraint in

the narrow canyon sections. STOMP failed due to obstacle avoidance issues. RRT*

managed to choose a safe trajectory but considerably distant from the seafloor. Our

approach successfully navigates through the narrow canyon regions, achieving a valid

solution while balancing both SDF obstacle avoidance and seafloor terrain following

mission constraints.

3.3.4 The Influence of Current Flows

In this section, we present experimental results with and without the incorporation

of current flows. Figure 3.9 shows the trajectories obtained under a suitably-tuned
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Figure 3.8: The performance of varied states of different methods on the Queen
Elizabeth Islands Dataset.

50-state parameterization of MGPMP with and without considering the influence of

currents. Without accounting for currents, the resulting trajectory is a straight-line

path. However, when the effect of the current is taken into consideration, the tra-

jectory exhibits a discernible leftward bend, permitting the trajectory to more safely

accommodate the rightward push applied by the current flow field. To evaluate the

computational impact, we measure the runtime required for different parameteriza-

tions of MGPMP, as outlined in Table 3.3. The consideration of currents introduces

an additional 20% computational overhead. However, this trade-off yields trajectories

that align more closely with real-world conditions, providing increased accuracy and

fidelity in motion planning scenarios intended to capture real-world conditions.
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Figure 3.9: Performance with and without currents on the New York City (NYC)
Upper Bay Dataset.
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Table 3.3: Runtime of MGPMP with and without currents

# Config 50 200 50 200

Consider Current ✓ ✓ ✗ ✗

Run Time (s) 0.79 10.29 0.54 8.38

Traj Length (m) 5264.49 5832.19 5104.24 5213.61

3.4 Conclusions

This chapter introduces a Mission-oriented Gaussian Process Motion Planning (MGPMP)

approach for UUVs that incorporates current flows, and can be applied to maps of

different scales. The proposed method includes a terrain following constraint de-

signed for UUV missions requiring proximity to the seafloor within a specified al-

titude. Furthermore, the method takes into account oceanic currents and realistic

UUV kinematic constraints, enhancing its relevance to real underwater missions. A

comparative analysis is conducted between our method, RRT* and STOMP, consid-

ering varied parameterizations, which demonstrates the high performance and wide

applicability of the proposed method.



36

Chapter 4

Multi-Robot LiDAR Simultaneous Localization and Mapping

4.1 Distributed Multi-Robot SLAM with Two-Stage Global-Local Graph

Optimization

In Section 2.2, we formulate the multi-robot SLAM problem as a maximum a poste-

riori estimation issue. Within this section, we revisit equation 2.2.7, considering the

intra-robot terms and inter-robot terms of the cost function:

X ∗ = argmin
X
{Fintra(X ) + Finter(X )}. (4.1.1)

Specifically, Cα ⊂ C denotes the set of intra-robot constraints among poses of robot

α, while Cαβ ⊂ C signifies the inter-robot constraints pertaining to poses of robots α

and β.

Fintra(X ) =
∑
α∈N

∑
⟨i,j⟩∈Cα

Fij (4.1.2)

Finter(X ) =
∑

α,β∈N ,α ̸=β

∑
⟨i,j⟩∈Cαβ

Fij (4.1.3)

In the distributed case, each robot optimizes its own contributions to the objective.

For robot α, we have:

X∗
α = argmin

Xα

(

Fintra︷ ︸︸ ︷∑
⟨i,j⟩∈Cα

Fij +

Finter︷ ︸︸ ︷∑
β∈N ,α ̸=β

∑
⟨i,j⟩∈Cαβ

Fij) (4.1.4)
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Xα = Xα ∪

xj

∣∣∣∣∣∣∣
xj ∈ Xβ, ⟨i, j⟩ ∈ Cαβ,

∀β ∈ N , β ̸= α.

 , (4.1.5)

where Xα contains all poses related to robot α. ∀x ∈ Xα, the robot pose x consists

of two parts, the rotation R and the translation t. Since the rotation R ∈ SO(3) is

a non-convex component [12], equation (4.1.4) may fall into local minima instead of

converging to a global minimal solution.

To address this, the widely used distributed Gauss-Seidel (DGS) method [12]

(illustrated in figure 4.1(a)) rewrites Xα as two subsets: Rα, containing the rotations

of all poses, and Tα, containing the translations of all poses. Additionally, DGS entails

a two-stage optimization process. For robot α, the DGS method first approximates

the rotation Rα:

R∗
α = argmin

Rα

(
∑

⟨i,j⟩∈Cα

Gij +
∑

β∈N ,α ̸=β

∑
⟨i,j⟩∈Cαβ

Gij). (4.1.6)

Gij is the negative log-likelihood function only considering a robot’s rotation:

Gij = [Cij − Ĉij(Ri,Rj)]
TωR[Cij − Ĉij(Ri,Rj)]. (4.1.7)

Similar to zij and ẑij, Cij and Ĉij are the observed and expected relative rotation

between Ri and Rj. We rewrite Ωij as

ωR 0

0 ωt

, where ωR is the rotation block of

Ωij. Then, the method performs a full-state graph optimization via the Gauss-Newton

method, with the optimized rotation guess R∗
α, to solve equation (4.1.4). However,

the full-state optimization step requires a good rotation approximation, while the

first step is still solving a non-convex problem. So DGS may require a long time to
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converge with a poor initial guess.
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(a) DGS method: separator poses are where
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(b) Illustration of our method, where a global
coordinate transformation graph (purple) and
local pose graph (gray) are optimized by each
robot.

Figure 4.1: Differences between DGS and our proposed method. Green, cyan, and
blue triangles indicate the poses of three different robots.

Inspired by the DGS method, we propose a two-stage global-local graph op-

timization. The initial global optimization step solves the transformation among

robots. ∀ pairs of separator poses ⟨αi, βj⟩ ∈ Cαβ, with xαi
∈ Xα, xβj

∈ Xβ, we define

the local robot frame for robot α as F−→α. Let αxαi
be the pose at time i of robot

α in its local coordinates, while βxαi
is xαi

in robot β’s local coordinates, ∃Tβα,

transforming αxαi
to βxαi

gives us:

βxαi
= Tβα ·αxαi

=βxβj
·βzβjαi

(4.1.8)

Tβα = βxβj
·βzβjαi

· (αxαi
)T . (4.1.9)
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Once there are inter-robot loop closures between robot β and robot α, Tβα can be

determined. Tβα = {T(1)
βα, ...,T

(m)
βα } is the set of estimations of Tβα obtained from m

inter-robot loop closures. Let us next assume the global frame F−→g is aligned with the

local frame of the first robot F−→1 (gxα = 1xα). Let T be the set of transformations

from any robot frame to the global frame:

T = {Tgα | ∀α ∈ N , α ̸= g}. (4.1.10)

We aim to minimize the total transformation error between local robot frames with

the Levenberg-Marquardt method:

T∗ = argmin
T

∑
α,β∈N

eTβαΩβαeβα. (4.1.11)

eβα is the error of one transformation, and ∀T(i)
βα ∈ Tβα:

eβα(Tgβ,Tgα) = T
(i)
βα − T̂

(i)
βα(Tgβ,Tgα). (4.1.12)

Next, all inter-robot constraints are transformed to local robot frames, and

the local graph optimization step is performed. Let us suppose there are inter-robot

constraints between robot α and robot β. To perform the local optimization of

robot α, we should transform the separator poses of robot β into local coordinates.

Accordingly, ∀xβj
∈ Xβ ∪ Xα :

αxβj
= T̂T

gα · T̂gβ · xβj
. (4.1.13)

Finally, consider αXα as the initial value for separator poses. For any two sets of

separator poses, ⟨αi, βj⟩, ⟨αk, γl⟩, a virtual intra-robot loop closure αzβjγl can be
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computed by equation 4.2.2.

We perform pose graph optimization using the Levenberg-Marquardt method

on equation 4.1.4 with a modified inter-robot term, Finter:

Finter =
∑

α,β,γ∈N ,
α̸=β,α ̸=γ

∑
⟨αi,βj⟩∈Cαβ ,
⟨αk,γl⟩∈Cαγ

eTvirΩvirevir (4.1.14)

evir = zαiβj
·αzβjγl · (zαkγl)

T − ẑαiαk
(xαi

,xαk
) (4.1.15)

This two-stage global and local optimization ensures a high-quality initial guess

for the local optimization step, which results in faster convergence. Furthermore,

the introduction of local robot frames contributes to the numerical stability and

consistency of the estimates and error covariances of the individual mobile robots.

Thus, the SLAM systems of the local robots are only dealing with minor numerical

changes in poses due to odometry drifts, which is beneficial for applications in active

SLAM, path planning, and exploration.

4.2 DiSCo (Distributed Scan Context) - SLAM Algorithm

Message 
Pool

LiDAR Scan

ScanContext
Feature 

Extraction 

Local SLAM Local 
Message Pool

KDTree 
Search

ICP Pose 
Estimation

Pairwise
Consistent

Maximization

Tranformation
Optimization

A loop Candidate    
Detected

ScanContext 
Feature

Tgα

robot α

Tβα

αzβjk

Tβα

⟨αi, βj⟩

γzαmαn

αzβjk

…Tαβ Tαγ ,,

…
robot β

robot γ

Figure 4.2: Overview of the architecture of DiSCo-SLAM, our proposed distributed
multi-robot SLAM system, with robot α as the local robot.

An overview of our distributed multi-robot SLAM system is shown in figures
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4.1 and 4.2. Per the architecture shown in figure 4.2, once the system receives a

LiDAR scan, the local SLAM thread and feature extraction thread are activated

simultaneously. We adopt LIO-SAM [89] as our local SLAM framework, and alterna-

tively use LeGO-LOAM [88] when tightly-coupled LiDAR-inertial data is unavailable.

Scan Context [54], a lightweight spatial feature descriptor for 3D LiDAR, is used to

describe and match features. Then, mobile robots exchange scan context features

and perform scan matching. Once a potential inter-robot loop closure candidate is

detected, incremental pairwise consistent measurement set maximization (PCM) [65]

is performed to remove outliers, as in [60]. A two-stage optimization is performed

by each robot, first establishing a global-to-local coordinate transformation, which

informs a subsequent local pose graph optimization. Finally, coordinate transforma-

tions are exchanged among robots for further optimization.

Scan Context Feature Description and Matching

Scan Context (SC) [54] describes a LiDAR scan by projecting the scan onto a 2D

plane, where the z-coordinate value of each 3D point is encoded in the intensity

of the corresponding 2D point. The 2D scan image is then divided into grid cells

according to a specified number of sectors Ns and rings Nr. For the Velodyne VLP-

16 Lidar employed in our work, we use Ns = 60 and Nr = 16. The value of each grid

cell I is the maximum intensity of all points captured in the cell. Finally, a ring key

feature of dimension Nr is extracted by counting the non-zero values of each ring.

A ring key KD tree is then built for loop closure candidate search. All SC

features of the top N matched ring key features are further compared to identify

the best loop closure candidate. The SC features are shifted along the sector axis

to ensure rotation invariance. The shifting angle also serves as an initial rotation

guess for the ICP scan-matching process when there is no coordinate transformation
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history.

4.2.1 Incremental PCM

Unlike single-robot SLAM, for which incremental odometry measurements are fre-

quently available to support an accurate initial guess, inter-robot loop closure can-

didates in multi-robot SLAM are only estimated by feature matching. Incremental

pairwise consistent measurement set maximization (PCM) is introduced to avoid the

acceptance of erroneous loop closures, which may result from different environmental

regions with similar appearance, or objects in the environment arranged in repeating

patterns.

PCM [65] checks the consistency of inter-robot constraints. A loop closure is

accepted if any two inter-robot constraints zβjαi
and zβlαk

meet the following condi-

tion: ∥∥(zβlβj
· zβjαi

· zαiαk
) · zβlαk

−1
∥∥2

2
< ϵ. (4.2.1)

zβlβj
is the intra-robot transformation of robot β between timestamps l and j; zβjαi

is the inter-robot transformation relating timestamp j of robot β and timestamp i of

robot α; ϵ is a small threshold (in our experiments to follow, we choose ϵ = 5). To

ensure robust real-time localization, we use a lazy initialization: incremental PCM

will not be performed until there is a designated number of loop closure candidates.

In our case, incremental PCM is performed after more than five loop closures are

detected.

4.2.2 Two-Stage Global and Local Optimization

As mentioned in section 4.1, the robots in our proposed framework perform a two-

stage global and local optimization. In the global step, coordinate transformations
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between robots are treated as measurements. As shown in equation 4.1.11, only

transformations from local robots to the global coordinate frame are optimized. The

covariance matrices of these measurements are linearly related to the timestamp, since

each robot’s dead reckoning error grows as time accumulates.

After global optimization, all separator poses from other robots are transformed

to the local coordinate frame according to the latest coordinate transformation ma-

trices. Then, a euclidean distance based radius search is performed to find the nearest

inter-robot constraint. During the radius search, separator poses whose timestamps

are too close to the present timestamp are discarded to avoid optimizing an ill-posed

graph. Present separator pose αxβj
and nearest separator pose αxk are converted to

a virtual intra-robot loop closure:

αzβjk =αxβj

T·αxk. (4.2.2)

Finally, the virtual observations are added to the local pose graph and the local pose

graph is optimized.

4.2.3 Message Passing Between Robots

When two robots rendezvous, they share their past SC features (which each robot

stores in a last in, first out buffer) as well as coordinate transformations between

themselves and other robots. The shared coordinate transformations are added to the

global factor graph for each robot’s global optimization step. Each recipient robot

searches for neighbors of the shared SC features in its respective KD tree. If an SC

feature match is found, the recipient robot will query its neighbor for a feature point

cloud containing edge and planar features, and its corresponding pose in the neighbor

robot’s local coordinates. The feature point cloud is then used for scan matching.
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If an inter-robot loop closure is detected, the recipient robot will send the resulting

transformation to the related robot when it is feasible to do so. Our use of SC permits

data-efficient communication, even when there are no communication constraints and

message-passing can occur at all times. An overview of sizes/quantities of messages

passed in a practical use-case is given in section 4.4.1.

4.3 SGM (Scene Graph Matching) - SLAM Algorithm

The system architecture within each robot is illustrated in figure 4.2. We perform

semantic sensor fusion using both camera and LiDAR data, while simultaneously

estimating the robot states through LiDAR-Inertial odometry and intra-robot loop-

closure optimization. We employ Point-LIO [39] to compute LiDAR-Inertial odom-

etry, and intra-robot loop closures are detected using a Euclidean distance-based

approach similar to that of LIO-SAM [89].

Figure 4.3: System Architecture. The SGM-SLAM pipeline for each robot.

Next, we construct a scene graph based on the estimated robot states and the

semantically labeled point-cloud from the semantic fusion. This scene graph is then

shared with robot neighbors. Once the local robot receives a scene graph from a

robot neighbor, scene graph matching is performed. If a sufficient number of objects

in the scene graph are matched, a relative transformation is computed to determine
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the inter-robot loop closures. Finally, all the constraints, as shown in equation (4.1),

are added to the SLAM factor graph. Both the local robot states and the scene graph

are then subsequently updated.

Figure 4.4: The semantic SLAM result from a single robot to build a scene
graph. Keyframe poses are marked in yellow, odometry poses in green, and objects
are represented by bounding boxes.

4.3.1 Scene Graph Construction

Figure 4.4 illustrates the required information from a single robot to build a scene

graph. We build a scene graph using information from the keyframe layer and the

object layer in our semantic SLAM system. The keyframe layer includes keyframes

selected by the SLAM front-end as vertices, connected by odometry measurements

between them, along with intra-robot and inter-robot loop closures. The object layer

is a fully connected graph where object vertices are interconnected by edges, using

Euclidean distances between objects as the edge weights. Keyframe vertices are linked
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Figure 4.5: Segmented image with detected objects shown in different colors (left)
and LiDAR scan projected onto the segmented image, with objects of interest marked
by red rectangles (right).

to object vertices if the corresponding object is observed in the respective keyframe.

The object vertices in the object layer are detected through semantic sensor

fusion. During this process, RGB images are aligned with LiDAR scans to create a

semantically labeled point cloud containing objects of interest. As shown in figure

4.5, the RGB images are segmented using Oneformer [46]. The point set from the

LiDAR scan is transformed into the 2D RGB image frame utilizing the LiDAR-

camera extrinsics and camera intrinsics. Subsequently, the semantic label from the

nearest pixel is assigned to the corresponding point. Finally, the labeled point cloud

is clustered into distinct objects.

A scene graph is constructed using objects (nodes) across keyframes, with

relationships (edges) weighted by Euclidean distances among objects. It can be for-
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mulated as a Linear Assignment Problem (LAP):

A∗
n = argmin

An

∑
vj∈V

(t)
l

∑
vk∈V

(t−1)
l

cjk · ajk; (4.3.1)

∀vk ∈ V(t−1)
l ,

∑
vj∈V

(t)
l

ajk = 1;

∀vj ∈ V(t)
l ,

∑
vk∈V

(t−1)
l

ajk = 1. (4.3.2)

Given two sets of object candidates (vertices) at the current keyframe timestep t

and the previous keyframe timestep t − 1, denoted as V(t)
l and V(t−1)

l , we define the

cost matrix C such that each element cjk =
∥∥pj − pk

∥∥
2
represents the Euclidean

distance between the object centers of the two vertices. An is the Boolean assignment

matrix indicating object vertex matches between two sets with elements ajk ∈ {0, 1}.

If ajk = 1 and the cost cjk < cmax, then the jth vertex vj ∈ V (t)
l and kth vertex

vk ∈ V(t−1)
l are matched. cmax represents the maximum allowable distance for two

object candidates across keyframes to be identified as the same object. We use the

Hungarian Algorithm [58] to solve this LAP.

4.3.2 Scene Graph Matching

In the scene graph matching step, we define the scene graph of the local robot l as

Gl = ⟨Vl, El⟩, and the scene graph received from a neighbor robot as Gi = ⟨Vi, Ei⟩.

The problem of graph matching across robots can be viewed as a maximum bipar-

tite matching problem. Due to the absence of an initial guess for inter-robot data

association, we cannot directly use Euclidean distances between object centers for

graph matching, as is done in the intra-robot case (section 4.3.1) for constructing the

scene graph. Instead, we adopt a similar technique used in SemanticLoop [100], and
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Figure 4.6: A simple example illustrating edge-wise matching between two scene
graphs. Edge lengths represent the weights, while node colors (green and blue) denote
vertex types.

formulate the problem as a Quadratic Assignment Problem (QAP):

A∗
e = argmax

Ae

∑
vj ,vk∈Vl

∑
vm,vn∈Vi

ajm · ujkmn · akn; (4.3.3)

∀vk ∈ Vi,
∑
vj∈Vl

ajk = 1;

∀vj ∈ Vl,
∑
vk∈Vi

ajk = 1. (4.3.4)

Here Ae is the Boolean assignment matrix where each element ajk ∈ {0, 1} indicates

the matching status of vertices vj ∈ Vl and vk ∈ Vi. ajk = 1 means vj and vk are

matched. ujkmn is an element of the 4D utility tensor U :

ujkmn = dv(vj, vm) · dv(vk, vn) · de(ejk, emn). (4.3.5)

The function dv(·) represents the vertex-wise comparison. In our case, we compare

only the labels of two objects to avoid confusion caused by partially observed objects.

If two objects have the same label, we set dv(·) = 1; otherwise, dv(·) = 0. The edge-
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wise comparison is defined as de(ejk, emn) = exp(−µ|wjk − wmn|), where wjk is the

weight of edge ejk and µ is a scaling factor. Figure 4.6 showcases a simple example

of edge-wise matching. In this figure, edge lengths represent the actual weights of

the graph. Consequently, de(w13, wbd), de(w12, wbc) and de(w23, wcd) are significantly

higher than the de(·) values of other matches. However, since vertex b and vertex 1

are of different types, dv(vb, v1) = 0, resulting in only e23 and ecd being matched.

We then vectorize the assignment matrix as vec(Ae), and reshape U into a 2D

matrix U2D, allowing for the rewriting of equation (4.3.3):

A∗
e = argmax

Ae

vec(Ae)
⊤ · U2D · vec(Ae). (4.3.6)

In equation (4.3.3), ajk is originally constrained to be Boolean. However, to make the

problem more tractable, we relax this constraint by allowing ajk ∈ [0, 1]. As proved

by Leordeanu et al. [64], the solution, A∗
e, is then given by the positive eigenvector

of U2D corresponding to its principal eigenvalue. Finally, the vertex-wise matching

of the objects can once again be formulated as an LAP similar to equation (4.3.1),

with cost matrix C = −A∗
e. Additionally, a minimum allowable eigenvector value is

introduced to prevent mismatches during the assignment.

4.3.3 Transformation Estimation

The transformation estimation module performs inter-robot data association based

on the graph matching result. Let the matched vertex pairs from local graph Gl

and neighbor graph Gi be denoted by Ml,i. Our goal is to estimate the relative

robot frame transformation TWBi
using this matched vertex pair set alone. For each

matched vertex pair ∀ < vml , v
m
i >∈Ml,i, let p

m
l and pmi represent the object centers

of the corresponding vertices. The transformation relationship between these points
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can be expressed as:

[
pml

1
] = TWBi

[
pmi

1
]. (4.3.7)

As long as we have more than 3 non-collinear objects, we can estimate TWBi
using

a rigid body transformation. To ensure a more robust solution, we assume that

all objects lie on a plane, allowing us to reduce the problem to a 2D rigid body

transformation estimation.

4.3.4 Inter-robot Loop Closure

The robot frame transformation estimate TWBi
is used as the coarse initial transfor-

mation guess for inter-robot loop closure. We then refine the result by performing

Iterative Closest Point (ICP) registration using the sparse object cloud associated

with the matched objects.

In our SLAM system, each object is connected to keyframes where the cor-

responding objects are observed, allowing us to retrieve two sets of keyframes (one

from each robot), Fm
l and Fm

i , corresponding to the overlapping regions of the local

robot and neighbor robots, respectively. These keyframes are transformed into world

frame W based on the latest robot state estimation X i
assoc and transformation TWBi

.

We extract the object information associated with the keyframe sets. We first

construct Fm
i = {Fm

i (j − k), . . . , Fm
i (j + k)} in a sliding window fasion, where k

controls the window size. In this paper, we use k = 5. Several matched object

vertices vmi ∈ Ml,i are observed in this subset. We then retrieve the corresponding

matched object vertices vml from the local scene graph and prepare our local subset,

consisting of keyframes connected to the object vertices. Finally, we perform point

cloud registration between these two subsets. The inter-robot loop closures are added

into the SLAM factor graph to improve the local robot state estimation. To ensure
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computational efficiency, each keyframe from the neighbor robot is associated with

only one local keyframe.

4.3.5 Communication Between Robots

The robots continuously share their latest scene graphs with neighbor robots. Only

partial scene graphs are shared, including object vertices, their corresponding fea-

tures, and the IDs of keyframes linked to those objects. After receiving a scene

graph from a neighbor, the robot stores and compares only the most recent scene

graphs. If a sufficient number of overlapping objects is detected from scene graph

matching, the robot sends a service request to the corresponding neighbor for the

compressed point cloud associated with overlapping objects, optimized robot state

estimation, and marginalized covariances of the keyframes connected to the matched

object vertices. If a keyframe point cloud from the neighbor robot is already stored

locally, only the pose and marginalized covariance are requested. To optimize com-

munication bandwidth, the point cloud contains only geometric information. Upon

receiving the request, the neighbor robot searches its dataset and sends the required

data. This data-efficient message-passing strategy ensures that a lightweight scene

graph is continuously shared, while the bandwidth-intensive compressed point cloud

is transmitted only when required.

4.4 Experiments

4.4.1 DiSCo-SLAM

Experimental Setup

In the experiments to follow, we present results using four customized datasets con-

figured for compatibility with 3D LiDAR-based, distributed multi-robot SLAM. We
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refer to the four datasets as (1) the KITTI 08 dataset, (2) the KITTI 00 dataset, (3)

the Stevens dataset, and (4) the Park dataset. We adapt our first two datasets from

the KITTI Vision Benchmark raw data sequences 08 and 00 [35]. In sequence 08,

100Hz raw inertial measurement unit (IMU) data is recorded with suitable temporal

consistency to be used with LIO-SAM[89]. We use LeGO-LOAM [88] to run sequence

00 with LiDAR scans only. Since both LIO-SAM and LeGO-LOAM are configured

to work with a 16-channel LiDAR, we downsample the KITTI LiDAR data from

64 beams to 16. We have modified sequences 08 and 00 into a synthetic two-robot

dataset and a synthetic three-robot dataset respectively, where time-stamps have been

adjusted to incorporate overlap and rendezvous.

The Stevens dataset is adapted from a dataset previously gathered on our

campus [88] with a Clearpath Jackal UGV equipped with a Velodyne VLP-16 LiDAR,

and only LiDAR data is used for LeGO-LOAM [88]. The dataset from this earlier

experiment has been modified into a two-robot dataset which includes overlap and

rendezvous. Lacking RTK-GPS ground truth in this dataset, we use satellite imagery

to qualitatively evaluate our experimental results.

Figure 4.7: Our Jackal UGV instrumented with LiDAR, IMU, and a GPS used for
ground truth.
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The Park dataset was gathered specifically for this study, using a single Clear-

path Jackal UGV, which is pictured in figure 4.7. Our UGV is equipped with a

Velodyne VLP-16 LiDAR, a MicroStrain 3DM-GX5-25 IMU, and a Single-band RTK

GNSS receiver, to both apply LIO-SAM [89] and evaluate it using RTK-GPS derived

ground truth information. To generate a synthetic three-robot dataset from this

single-robot mission, we rewrote the timestamps of each synthetic robot’s trajectory

to achieve a meaningful synchronization of three intersecting robot trajectories. Each

robot executes a “figure-eight” trajectory comprised of two large loops; the individual

robots will accumulate errors along these loops, but there is sufficient overlap among

robots that inter-robot constraints can alleviate these errors.

In all four datasets, KITTI (08 and 00), Stevens, and Park, each robot trajec-

tory includes intra-robot and inter-robot loop closures, and each robot encounters at

least one rendezvous with every other robot. When GPS is available, it is used as

ground truth for quantitative analysis, and not used for SLAM. We project the GPS

measurements onto Universal Transverse Mercator (UTM) coordinates and perform

a coordinate transformation to facilitate comparisons with our SLAM results. All

experimental comparisons are performed using playback of previously gathered data

on a desktop computer equipped with an Intel i9-9900K CPU, 62.7 GB memory us-

ing the robot operating system (ROS) in Ubuntu Linux 18.04. All robot threads run

concurrently on the same processor, and do not utilize GPUs.

Performance of Two-Stage Optimization

In this section, we perform comparisons of multiple configurations of our proposed

DiSCo-SLAM two-stage optimization framework, using the three-robot Park dataset.

Displayed in figure 4.9 are multi-robot SLAM results for increasing levels of opti-

mization. These comparisons are intended to display the efficacy of the proposed
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(a) No inter-robot constraints (as in
figure 4.9(b)).

(b) With inter-robot constraints (as in
figure 4.9(c)).

Figure 4.8: Park dataset, at a location where there is overlap among all three robot
trajectories.

global and local optimization procedures in combination, versus their standalone per-

formance. In figure 4.9(a), only the global optimization step is applied, and neither

inter-robot nor intra-robot loop closure constraints are included in the local optimiza-

tion step; it is produced using odometry only. Accordingly, overlap and rendezvous

among robots fails to inform local pose-graph constraints, and thus results in a visible

buildup of localization error in the result. The inclusion of intra-robot loop closures

into the local optimization procedure, seen in figure 4.9(b), noticeably improves robot

localization performance. Further improvements are apparent in figure 4.9(c), where

inter-robot constraints are also added to each vehicle’s local pose graph, including

them in the local optimization step. A further inspection of the benefits of utilizing

inter-robot constraints in local pose graphs can be seen in fugure 4.8. The ”jackal

2” robot from the plots of figure 4.9 (pink) is completing a large loop with no intra-

robot constraints. There, one can clearly note the higher consistency in pose estimates

across overlapping robots, when leveraging these constraints.

Quantitative pose estimation error metrics for a representative SLAM execu-

tion trace over the Park dataset are listed in Table 4.1. To compute these errors
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(a) DiSCo-SLAM, with global transformation
optimization, and locally, only odometry.
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(b) DiSCo-SLAM, w/ global and local opti-
mization, no inter-robot constraints in local
pose graphs.
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(c) DiSCo-SLAM as proposed, full global and
local optimization.
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(d) DGS optimization with PCM.

Figure 4.9: Representative trajectory estimation results over the three-robot Park
dataset, with different multi-robot SLAM configurations.



56

Table 4.1: Root Mean Square Error (RMSE) w.r.t. GPS

Dataset Configure X (m) Y (m) Total (m)

Park

DiSCo-Odometry 4.87 3.35 5.91

DiSCo-Local 1.39 1.11 1.78

Full DiSCo-SLAM 1.31 0.52 1.43

DGS with PCM 11.84 5.38 13.00

KITTI 08
Full DiSCo-SLAM 5.57 4.39 7.09

DGS with PCM 14.81 19.47 24.46

KITTI 00
Full DiSCo-SLAM 3.48 5.61 6.60

DGS with PCM 14.54 14.78 20.73

relative to ground truth information, GPS data is collected at a rate of 5Hz, while

we generate one LiDAR keyframe per second. We match each keyframe pose with

the nearest GPS pose according to their timestamps. The estimated trajectories are

transformed from local SLAM coordinates into UTM coordinates using the starting

points of the “jackal 1” and “jackal 2” trajectories as geometric constraints (the jackal

1 and jackal 2 trajectories are denoted in the plots of figure 4.9). The result in Ta-

ble 4.1 with both intra- and inter- robot constraints added to the local pose graph

achieves the highest accuracy.

Comparison with Distributed Gauss-Seidel (DGS)

Due to its data-efficiency and relevance to real-time multi-robot SLAM applications,

we next compare our method against DGS optimization with PCM (summarized in

figure 4.1 and equation 4.1.6-4.1.7), which comprises the back-end of DOOR-SLAM

[60], a framework that has supported distributed multi-robot SLAM across different

platforms and sensing modalities, including LiDAR. We test both DGS with PCM

and DiSCo-SLAM with the same front-end on four datasets, (1) our modified KITTI
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(a) DGS optimization with PCM.
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(b) DiSCo-SLAM, with full global and local
optimization.

Figure 4.10: Optimization result on the KITTI 08 dataset.

08 dataset, (2) our modified KITTI 00 dataset, (3) the Stevens campus dataset and

(4) the Park dataset. The RMSE with respect to GPS is given in Table 4.1.

Figure 4.10 shows representative results optimized by DGS over the KITTI 08

dataset. We transform the trajectories to align them with the GPS data according to

the starting point of both robots, although the GPS data undergoes a small amount

of erroneous drift in this dataset. The rotation angles are incorrectly estimated by

DGS at several corners in figure 4.10a where turns occur, while there are no significant

errors in the result of DiSCo-SLAM when turning corners in figure 4.10b. The KITTI

00 dataset is challenging since only LiDAR scans are used, and the LiDAR frame

spacing is larger than our VLP-16 datasets. Both DiSCo-SLAM and DGS with PCM

achieve low accuracy since the LiDAR frame rate is low, and thus fewer inter-robot

loop closures are detected. The optimized robot trajectories of DGS with PCM (figure
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(a) DGS optimization with PCM.
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(b) DiSCo-SLAM, with full global and local
optimization.

Figure 4.11: Optimization result on the KITTI 00 dataset.

4.11a) align well where there are inter-robot loop closures. However, their rotation

estimation falls into local minima and introduces errors. figure 4.11b shows the result

for DiSCo-SLAM. Since drift accumulates locally due to a lack of intra-robot loop

closures, we lower the threshold for PCM and model the covariances of inter-robot

loop closure measurements as Cauchy distributions. Although the resulting trajectory

aligns with GPS well for most parts, errors occur along the z-axis of “jackal 1” at the

ending point due to the lack of intra-robot loop closures.

For the Stevens dataset, GPS measurements along the path are not available,

so we transform the trajectory estimates into UTM coordinates and project them onto

satellite imagery. Figure 4.12 shows the optimized trajectories using DiSCo-SLAM

(figure 4.12b), and DGS with PCM (figure 4.12a). The yellow robot trajectory, aligned

with the global frame, is well-optimized in both methods. DGS’s estimate of the pink



59

(a) DGS optimization w/ PCM. (b) DiSCo-SLAM, with full global and
local optimization.

Figure 4.12: Optimization result on the Stevens campus dataset.
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robot trajectory drifts as time accumulates, while this robot’s trajectory estimate in

our DiSCo-SLAM method aligns with the roadways depicted in the imagery.

Table 4.2: RMSE w.r.t GPS for 40 trials

RMSE Min (m) Max (m) Mean (m) STD (m)

DiSCo-SLAM 1.01 2.51 1.52 0.34

DGS with PCM 2.87 14.37 6.23 2.72

Table 4.3: Relative pose estimation error at traj. connecting points

Dataset Configure Roll Pitch Yaw
Total
(◦) X Y Z

Total
(m)

Park

DiSCo-SLAM 0.30 0.50 0.60 0.83 0.52 0.95 1.36 1.74

DGS with PCM 0.12 0.01 0.22 0.25 0.16 0.04 0.03 0.16

DiSCo-SLAM 0.85 2.56 1.75 3.21 0.28 0.16 0.23 0.40

DGS with PCM 0.55 3.40 3.64 5.01 1.61 1.32 0.45 2.13

KITTI08
DiSCo-SLAM 1.09 0.99 0.45 1.54 3.60 4.28 0.27 5.6

DGS with PCM 1.79 1.25 14.03 14.19 22.58 7.82 0.37 23.90

KITTI00

DiSCo-SLAM 0.38 2.99 1.10 3.20 6.38 1.94 1.21 6.78

DGS with PCM 11.38 1.57 14.84 18.76 14.92 26.35 14.15 33.42

DiSCo-SLAM 0.56 7.43 0.62 7.48 2.08 6.74 14.00 15.67

DGS with PCM 0.20 0.40 0.75 0.87 0.67 11.35 1.49 11.47

Stevens
DiSCo-SLAM 3.22 5.07 0.26 6.01 0.32 0.99 0.23 1.07

DGS with PCM 1.61 3.63 4.28 5.84 0.50 1.28 0.99 1.70

The Park dataset was gathered with GPS signal available throughout, so we

compared our method and the DGS method using the GPS data as ground truth.

Figures. 4.9d and 4.9c show results from the Park dataset using DGS optimization

and our method, respectively. For this dataset, we run multiple trials to examine

the robustness of our method. After each trial, the SLAM trajectory estimates are
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compared against the GPS data, following the same procedure described in section

4.4.1. Table 4.2 shows the RMSE with respect to GPS ground truth data, across 40

trials of re-playing the same recorded dataset, using both methods. Although the

lowest error in all the trials for DGS and our method is close, our method offers a

more stable, consistent output. The DGS method’s rotation optimization step often

hinders convergence to a global minimum under the infrequent arrival of inter-robot

constraints, as evidenced by the buildup of drift for “jackal 2” in fugure 4.9d.

Because our RTK-GPS data only covers two translational degrees of freedom,

we also compare relative pose estimation error. Since all of our multi-robot datasets

are obtained by dividing single-robot datasets into several parts, we use the coin-

cidence of the ending point of one robot’s trajectory and the starting point of the

next as the basis for quantifying the rotational and translational errors across a rep-

resentative inter-robot “rendezvous point” from each dataset, which are captured in

Table 4.3 for all of our datasets. Although DiSCo-SLAM is not always superior, its

worst-case performance is well below the levels occasionally reached by DGS.

Communication and Computational Efficiency

To quantify the bandwidth requirements of the proposed SLAM framework, we have

examined the sizes of the messages sent between robots during execution of the

datasets. The results for Velodyne VLP-16 and VLP-64 LiDAR are shown in Ta-

bles 4.4 and 4.5 respectively, which catalog the mean, minimum, and maximum size

of each type of message exchanged, as well as the total quantity of each type of mes-

sage exchanged, between robots during their execution of the trajectories. We assume

there is no maximum communication range, so that messages can be exchanged be-

tween robots at any time. While a single laser scan from the Velodyne VLP-16 is 1.04

MB, the message size needed for our DiSCo-SLAM method for each LiDAR keyframe
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is around 200 KB.

Table 4.4: Data Sizes of Messages Sent (VLP-16)

Message Info
Mean
(kB)

Min
(kB)

Max
(kB)

No. Total Msgs.

Stevens Park

SC Feature & Local Pose 4.08 4.04 4.12 3936 4222

Feature Cloud (Edge) 9.65 5.08 15.90 37 837

Feature Cloud (Planar) 71.31 54.74 85.98 37 837

Feature Cloud (Other) 70.91 50.58 83.99 37 837

Coordinate Transformation 0.70 0.70 0.70 3 711

Inter-Robot Loop Closure 0.12 0.12 0.12 3 72

Table 4.5: Data Sizes of Messages Sent (VLP-64)

Message Info
Mean
(kB)

Min
(kB)

Max
(kB)

No. Total Msgs.

KITTI00 KITTI08

SC Feature & Local Pose 15.75 15.75 15.75 1134 2333

Feature Cloud (Edge) 30.60 16.76 42.62 198 12

Feature Cloud (Planar) 309.70 242.39 383.03 198 12

Feature Cloud (Other) 89.18 69.46 115.96 198 12

Coordinate Transformation 0.70 0.70 0.70 130 8

Inter-Robot Loop Closure 0.12 0.12 0.12 24 7

Table 4.6 shows the computation time of each key step of DiSCo-SLAM, using

the computer described in section 4.4.A. The groupings of rows correspond to the

groupings given in Tables IV and V (i.e., the algorithmic steps in one grouping yield

the messages in the other). Feature description and matching are, by far, the most

frequently performed steps, serving as an efficient filtering mechanism that permits

costly point cloud matching to be invoked less frequently.
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Table 4.6: Processing Time for Each Algorithmic Step (ms)

Subroutine
Park KITTI08 KITTI00 Stevens

Mean Max Mean Max Mean Max Mean Max

SC Feature Description <1 9 <1 6 <1 6 <1 10

SC Feature Matching 61 188 34 67 2 68 24 90

Cloud Scan Matching 193 614 112 147 19 147 314 677

Incremental PCM 55 346 7 10 <1 10 5 20

Global Optimization 4 12 <1 1 <1 1 <1 <1

Local Optimization 7 36 2 14 <1 14 7 20

4.4.2 SGM-SLAM

We evaluate the performance of our proposed scene graph matching algorithm using

both simulation and real-world datasets. The simulation dataset is used to test the

algorithm’s capability in performing sufficient graph matching and transformation

estimation. The real-world datasets in this paper are collected from a heterogeneous

multi-robot setup, which includes a handheld device and a Unitree Go2 EDU, both

equipped with LiDAR, an inertial sensor, and a camera.

Figure 4.13: Our data-gathering platform consists of a Unitree robot dog with sensors
mounted on the top.
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As shown in figure 4.13, the handheld device is equipped with a LiVOX mid-

360 LiDAR and an Intel RealSense Depth Camera. The onboard sensors of the

Unitree robot dog are not utilized in this work; instead, the same handheld device

is attached to the robot dog for data collection. The introduction of the Unitree

robot dog enhances the mobility of the entire system, enabling the handheld device

to gather data in dynamic environments and traverse larger areas than a stationary

setup would allow.

We specifically collected this dataset because existing multi-robot SLAM data-

sets [104] [93] [30] use a VLP-16 LiDAR, which produces a sparse, layered point cloud

that does not meet our needs for point cloud segmentation. The data sequences

are collected in a suburban campus environment. Due to limitations in equipment

availability, we collected sequences for each robot individually as ROS2 bag files and

later synchronized them offline by playing them simultaneously. The entire system

is implemented using Robot Operating System (ROS) 2 Foxy on Ubuntu 20.04. The

GPU is utilized only for image segmentation.

Evaluation of Scene Graph Matching on Synthetic Data

To quantitatively evaluate the robustness of the scene graph-based transformation

estimation module, we create a 60m× 60m environment containing 50 objects, each

assigned a label from 6 distinct classes, along with randomly generated center poses

and dimensions. This experiment simulates a hypothetical matching between robots,

which can be extended to any n-robot scenario. Tab. 4.7 and 4.8 show the success rate

of transformation estimation under various conditions. Each experiment is repeated

20 times, with random initial transformations applied to both graphs for consistent

results. The transformation estimation is considered successful if the translation

error et < 2m, and the rotation error er < 20◦ on each axis. In both tables, no
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Figure 4.14: An example illustrating a successful transformation estimation despite
the presence of both position and semantic label errors. Objects in G1 are marked
with red cuboids, and objects in G2 are marked with blue cuboids. The objects in
G2 are transformed into the local coordinate system of G1 using the transformation
estimation result. A table in G1 is misclassified as a sofa (highlighted by the black
rectangle), yet the transformation estimation remains correct and serves as a sufficient
initial guess.

pose error column indicates the success rate when the true object center pose is used

for graph matching and transformation estimation, whereas the pose error column

corresponds to the case where the object pose includes random errors following a

uniform distribution: ±1m on the x- and y-axes, ±0.5mm on the z-axis, ±2.5◦ for

roll and pitch, and ±10◦ for yaw. While the runtime increases as the graph size grows,

the proposed algorithm maintains real-time performance.

Table 4.7: Success Rate of transformation estimation for various graph sizes and
amounts of overlap without semantic label error.

Object Count Success Rate (%) Runtime

G1 G2 Overlap No Pose Error Pose Error (ms)

8 8 4 100 45 7

15 15 7 100 90 14

35 32 17 100 100 292
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Tab. 4.7 presents the success rate for different graph sizes. Object count de-

notes the number of objects in each scene graph, while overlap refers to the number of

overlapping objects between two graphs. Our algorithm succeeds in all cases when no

pose error is introduced. When pose error is present, it still achieves a relatively high

success rate given a sufficient number of objects in the graph. However, the success

rate is significantly lower in the 4-object overlap case, which is challenging due to the

limited number of correct matches for transformation estimation.

Table 4.8: Success Rate of transformation estimation with various semantic label
errors.

Mislabel Count
Success Rate (%) Runtime

No Pose Error Pose Error (ms)

3 100 100 275

6 100 95 247

9 70 45 250

12 35 25 245

Tab. 4.8 presents the success rate when incorrect semantic classification is also

considered. In all cases shown in Tab. 4.8, G1 contains 35 objects, and G2 contains 32

objects, with an overlap of 17 objects. Figure 4.14 illustrates a scenario where both

pose and semantic errors are present, yet the proposed algorithm successfully handles

the matching. The algorithm achieves a high success rate when at least 65% of the

semantic labels are correct, regardless of whether pose error is introduced.

SLAM Results over Real-World Data

We compared our SGM-SLAM pipeline with a state-of-the-art LiDAR SLAM method

on our self-gathered datasets. Due to equipment limitations, GPS was not available

for either the indoor or outdoor dataset. Instead, we used Structure from Motion
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(SfM) from COLMAP [87] as the ground truth, since it is a global method that op-

timizes observations across all images and performs inter-image registration globally.

The SfM results ensure accurate inter-robot relative pose estimation, which is crucial

for evaluating multi-robot SLAM algorithms. Swarm-SLAM is selected for compari-

son as it is a ROS2-based distributed method that supports both camera and LiDAR

inputs. Its odometry is derived from LiDAR scans using RTAB-Map [59]. Tab. 4.9

shows the Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE)

between our SLAM and SfM results, while figure 4.15 provides a qualitative com-

parison. “Swarm-SC” denotes the use of the LiDAR descriptor Scan Context [54]

for inter-robot data association, while “Swarm-CP” denotes the use of the image

descriptor CosPlace [3].

We collected two datasets on the SRI campus. The outdoor dataset consists

of two robots covering a larger area and contains sparse objects, while the indoor

dataset involves three robots covering a relatively small area with a large number of

repeated objects. We use COLMAP to reconstruct only feature-rich areas, ensuring

a precise reconstruction result as ground truth. The main challenge in the outdoor

dataset is the low overlap ratio between trajectories, requiring robust inter-robot

data association. The indoor dataset, on the other hand, is affected by dim lighting

conditions. Additionally, both datasets contain repeated feature patterns from objects

such as chairs, benches, and tables. To align the trajectories and evaluate error, we

use EVO1. Since EVO is designed for single-robot usage, we combine the trajectories

collected by different robots into a single file and evaluate the results as a whole

trajectory. The merged result based on scene graph matching from the outdoor

dataset is shown in Figs. 4.16a (side view) and 4.16b (top-down view), while the

result from the indoor dataset is shown in figure 4.17.

1https://github.com/MichaelGrupp/evo
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Figure 4.15: SLAM trajectories from multiple robots aligned with pose estimates
from COLMAP sparse reconstruction on outdoor (left) and indoor (right) datasets.

Table 4.9: Absolute Trajectory Error (ATE) [m] in meters for the proposed
method compared to state-of-art methods.

Method Swarm-SC Swarm-CP Ours

Outdoor 20.29 3.92 1.32

Indoor 3.36 5.70 0.81
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//

Figure 4.16: Top-down view (top) and side view (bottom) of the merged result from
the two-robot dataset collected in an outdoor area of the SRI campus.
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Figure 4.17: Top-down view (top) and side view (bottom) of the merged result from
the three-robot dataset collected in an indoor area of the SRI campus.
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Communication Analysis

We next analyze the size and quantity of perception messages exchanged in our real-

world datasets, which employ simulated wireless communication. We summarize the

size of perception messages for the proposed method in Tab. 4.10. The “Point-cloud

Raw” baseline we compared against refers to a brute-force centralized strategy, where

all raw point clouds are transmitted to a centralized server. To further reduce com-

munication overhead, only object node information is shared, which includes the node

ID, center position, dimensions, semantic information, and color. The edges are com-

puted locally based on the object node information. Additionally, the sparse object

point cloud is transmitted upon request once object-level matching is determined,

optimizing communication efficiency.

Once a relative graph transformation estimation is computed, the relevant

keyframes are requested from the robot neighbors. A keyframe is only sent after the

requesting robot confirms it has not been sent previously. The point cloud keyframe

message is encoded using PCL [78] to minimize its size.

The results in Tab. 4.10 show that the proposed method is highly data-efficient,

with the geometric priors provided by graph matching effectively reducing the need

to exchange most point cloud data.

Table 4.10: Sizes of Perception Messages [KB] for the proposed method.

Message Type
Outdoor Indoor

Mean Max No. Mean Max No.

Point-cloud Raw 508.2 516.9 3073 508.1 512.1 3079

Scene Graph 7.76 16.93 701 18.40 44.37 845

Keyframe Request 0.02 0.02 61 0.02 0.02 411

Keyframe Response 18.87 22.95 10 6.90 11.05 72
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4.5 Conclusions

In this chapter, we have presented DiSCo-SLAM and SGM-SLAM, two distributed

multi-robot SLAM frameworks for 3D LiDAR observations. Both feature relatively

low communication bandwidth for message passing.

In DiSCo-SLAM, LiDAR scans are efficiently described using Scan Context de-

scriptors and shared between robots. We also propose a two-stage global-local graph

optimization procedure that offers robust output for relatively large scale multi-robot

SLAM problems with limited occurrences of rendezvous, finding transformations re-

lating robots that may be distant from one another. We compare our optimization

strategy with the widely used distributed Gauss-Seidel method, showing the relative

stability of our method.

In SGM-SLAM, we extract semantic information from LiDAR and camera

data, and construct a multi-level scene graph collaboratively with the multi-robot

team. The introduction of object-level graph matching improves the generality, ro-

bustness, and communication efficiency of our distributed SLAM system in both

indoor and outdoor environments.



73

Chapter 5

Multi-Robot Underwater Simultaneous Localization and Mapping

We provide a comprehensive introduction to DRACo-SLAM2, our proposed multi-

robot SLAM framework utilizing object graph matching. Figure 5.1 presents the

complete pipeline of the proposed framework. We define the local robot as robot α.

The inter-robot data association process begins by clustering the latest point-cloud

map, Mα, generated by the local SLAM algorithm into an object map, Vα. The

object map is then shared among the robot team.

Figure 5.1: Overview of DRACo-SLAM2 Architecture. Each robot’s object
map is clustered using DBSCAN. The local robot receives the neighboring robot’s
object map, aligns it to its local map using graph matching, and requests scans for
ICP registration with the graph matching transformation as an initial guess. Inter-
robot loop closures are then added to the pose graph for the two-step pose graph
optimization (PGO). The local robot’s trajectory and object vertices are shown in
blue, while the neighboring robot’s data is in green. Dashed lines indicate detected
correspondences between objects in different maps.

When the local robot receives an object map, Vβ, from a neighboring robot β,

the object maps are matched through object graph matching. A detailed description
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of the object graph matching process is provided in section 5.1.2. Feature points from

the scans corresponding to overlapping objects are then requested from robot β for

performing scan registration. The transformation Tβ
α, representing the coordinate

transformation from Vβ to Vα, serves as the initial estimate for scan registration, as

detailed in section 5.1.3.

After registration, incremental group-wise consistent measurement set maxi-

mization (GCM) is applied to ensure robustness by mitigating errors caused by per-

ceptual aliasing. All loop closures that pass the GCM process are subsequently added

to the factor graph. A two-step inter-robot pose graph optimization is then performed

to achieve a stable result, following the process presented in section 4.1. All initial

guesses for both local and global PGO are obtained by applying map coordinate

transformations based on object graph matching.

Inter-robot loop closures are added to the factor graph using a robust noise

model to ensure accurate and reliable association. By adopting this two-step PGO

approach, we enable faster convergence of the factor graph optimization. This is

achieved by updating only a subset of the information at each step, rather than

recalculating the entire graph, which reduces computational overhead and accelerates

the optimization process.

5.1 Local SLAM, Point-cloud Map and Object Map

5.1.1 Local SLAM

We choose Bruce-SLAM [96] as our local SLAM framework. Bruce-SLAM is a sonar

SLAM algorithm that uses data exclusively from forward-looking sonar (FLS) and ve-

hicle dead-reckoning measurements. However, the flexibility of our proposed DRACo-

SLAM2 system allows for seamless integration with any local sonar SLAM algorithm.
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As a graph-based SLAM algorithm, Bruce SLAM formulates the SLAM optimization

problem as a maximum a posteriori (MAP) estimation problem, as shown in equation

2.2.4.

Point-cloud map

To perform sequential scan matching and intra-robot data association, feature points

are extracted from sonar images using SOCA-CFAR [27], a variant of the Constant

False Alarm Rate (CFAR) technique [82]. Let the set of feature points detected from

the sonar image captured at timestamp i by robot α be denoted as Fαi
. These points

are transformed from the sensor frame into the local frame of robot α, with state

xαi
∈ Xα, and are represented as αFαi

. A local point-cloud map for robot α, shown

as black points in figure 5.1, is thus defined as Mα = {αFαi
| i ∈ [0, t]}, where t

represents the current timestamp.

Object map

The DBSCAN clustering algorithm [28] is applied to cluster objects from the latest

local point-cloud map,Mα. For each cluster, a bounding rectangle is computed based

on the positions of the points in the cluster. The bounding rectangles of local objects

are shown in blue in figure 5.1. Each object, denoted as vαi
, is described by the

center coordinates (xαi
, yαi

) and the dimensions (length and breadth) (lαi
, bαi

) of its

bounding rectangle. To filter out noise misidentified as objects, only clusters with a

number of points np > nmin and a dimension max(lαi
, bαi

) > dmin are accepted. The

set of all accepted objects forms the object map, Vα.
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5.1.2 Object Graph Construction and Matching

When the object map Vβ is received from the neighboring robot β, object graph

Gβ = (Vβ, Eβ) is constructed using Vβ as vertices in the graph. Gβ is a directed

complete graph, and Eβ is further defined as:

Eβ = {eij = (vi,vj, wij) | vi,vj ∈ Vβ}, (5.1.1)

where wij is the Euclidean distance between the centers of objects vi and vj. A local

object graph Gα is constructed in the same manner. Thus, the object map matching

problem is converted into a bipartite graph matching problem between Gα and Gβ.

Inspired by SemanticLoop [100], we formulate this bipartite graph matching

problem as a Quadratic Assignment Problem (QAP), as shown in equation 4.3.4.

One key difference between our method and SemanticLoop [100] is the calcu-

lation of the utility function u(·):

u(eij, ekl) = exp
(
−µ|wij − wkl| − |li − lk| − |bi − bk|

)
. (5.1.2)

While SemanticLoop considers the semantic classes of objects and the Euclidean

distances between their centers, our approach compares object dimensions (li, bi) and

corresponding edge weights, with µ = 4 serving as a scaling factor. We follow the

same steps outlined in section 4.3.2 to solve this QAP problem.

5.1.3 Scan Registration

When more than three matched object pairs are obtained from the graph matching

process in section 5.1.2, the coordinate transformation Tβ
α from Vβ to Vα is computed

using affine transformation estimation. To ensure robustness, we apply RANSAC and
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accept the transformation only if it has more than four inliers. With the transforma-

tion Tβ
α estimated from object maps as geometric priors, we apply ICP registration

in a manner similar to its application in single-robot SLAM [96]. We use a sliding

window for the target cloud to improve the registration results. Figure 5.2 illustrates

the source and target clouds before and after ICP registration, demonstrating that

the initial guess provided by object graph matching is sufficient for successful ICP

registration.

Figure 5.2: Graph matching-based ICP registration. The source cloud (or-
ange) is roughly transformed into the local robot coordinate system using the trans-
formation estimated from object graph matching. It is then aligned with the target
cloud (black) using ICP with a sliding window of size 3. The registered source cloud
is shown in green.

5.1.4 Group-wise Consistent Measurement Set Maximization

A challenging aspect of scan registration is the fact that separate pairs of scans

located in close proximity to one another can give rise to similar registration errors, as

illustrated in Figure 5.3. For sonar scan registration, the overlap percentage between
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the source and target point clouds is an intuitive indicator of quality. However, as

we will discuss in Section 5.2.1, even a high overlap ratio does not always guarantee

minimal registration error. While this is acceptable when using a global PCM, it can

lead to errors when only incremental PCM is applied. To address these challenges, we

propose a modified approach that we denote Group-wise Consistent Set Measurement

Maximization (GCM), inspired by PCM.

Figure 5.3: Motivation for use of GCM. A series of three inter-robot loop clo-
sures, in the same region of the environment (from our USMMA dataset depicted in
figure 5.7), are impacted by similar point cloud registration errors. Each erroneous
registration result is shown in green, with ground truth shown in red.

In PCM [65], the consistency of observations between a pair of robots is con-

sidered, as illustrated in figure 5.4a. For two inter-robot loop closure observations,

zβi
αk

and z
βj
αl , involving robot α and robot β, the method evaluates their consistency

using:

C(zβi
αk
, zβj

αl
) =

∥∥∥(zβi
αk
)−1 · x̂βi

βj
· zβj

αl
· x̂αl

αk

∥∥∥ . (5.1.3)

Where x̂βi

βj
and x̂αl

αk
are the relative state estimations marginalized from the factor
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graph optimization of local SLAM.

In the proposed GCM, we consider the consistency of observations among a

group of robots (figure 5.4b). For two inter robot loop closure observations, zβi
αk

between local robot α and local robot β and z
γj
αl between robot α and robot γ, we

perform:

C(zβi
αk
, zγjαl

) =
∥∥∥(zβi

αk
)−1 · x̂βi

γj
· zγjαl
· x̂αl

αk

∥∥∥ . (5.1.4)

Robot α is considered the local robot, so x̂αl
αk

can be obtained by marginalizing the

factor graph optimization of local SLAM. We further expand x̂γl
βk
:

x̂βi
γj

= (x̂α0
βi
)−1 · x̂α0

γl
, (5.1.5)

= (x̂β0

βi
)−1 · x̂β0

α0
· (x̂γ0

α0
)−1 · x̂γ0

γj
. (5.1.6)

The relative state estimations x̂γ0
γl

and x̂β0

βk
can be marginalized from the local factor

graph optimization of neighboring robots, respectively. The relative state estima-

tions x̂β0
α0

and x̂γ0
α0

are the optimized map coordinate transformations obtained from

historically accepted loop closures.

(a) PCM (b) GCM

Figure 5.4: Illustration comparing PCM and the proposed GCM. Circles rep-
resent pose estimations, arrows indicate measurements, and purple arrows highlight
inter-robot loop closure measurements.
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5.1.5 Communication

In this section, we summarize the communication overhead between the local robot

and its neighboring robots. As depicted in figure 5.1, at each sonar timestep, the

object map is shared with the robot team as an objects message. Additionally, pose

estimations are incrementally transmitted to neighboring robots.

To optimize the use of communication bandwidth, updates to the historical

state estimations for neighboring robots are only performed when significant changes

result from loop closures. Once the graphs are matched, the sonar scans associated

with the matched objects are requested from the neighboring robots. After the de-

tection of inter-robot loop closures, this information is also shared with the robot

neighbors.

5.2 Experiments

Experimental Setup

We evaluate DRACo-SLAM2 using both real-world and simulated data. The real-

world data, shown in figure 5.7, was collected using our customized BlueROV2-Heavy

(illustrated in figure 5.1) at the U.S. Merchant Marine Academy (USMMA), King’s

Point, NY. Details of the BlueROV2-Heavy configuration can be found in our pre-

vious work [66]. For this study, we utilize the robot’s horizontally-oriented Oculus

M750d sonar, along with a Rowe SeaPilot DVL and a VectorNav VN100 MEMS IMU.

Two fully simulated datasets, the USMMA dataset and the airplane dataset, were

generated using HoloOcean [76]. The USMMA dataset replicates key features of the

environment where the real USMMA dataset was collected, including floating docks

and repeating circular pier pilings. The airplane dataset is intended to simulate the

site of an airplane wreck located on the seafloor (this dataset is shown in figure 5.1).
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In all datasets, both real and synthetic, all robots operate at the same, fixed depth

(close to the surface in the USMMA datasets, and close to the seafloor in the airplane

dataset). To simulate the simultaneous operation of multiple robots, we recorded sev-

eral dataset sessions and replayed them concurrently on a single computer (for both

our real and synthetic datasets), with simulated communications between robots.

All experiments were conducted on a single computer equipped with an Intel Xeon

E-2276M CPU, 31.1 GB of memory, and running Ubuntu 20.04 with ROS Noetic.

5.2.1 Performance of Inter-Robot Loop Closure Detection

In this section, we evaluate the performance of our object-graph-matching-based inter-

robot data association technique. figure 5.5 shows the precision (left) and the number

of correct loop closures detected (right) as a function of the minimum acceptable

overlap ratio on our two fully simulated datasets.

The overlap ratio, roverlap =
noverlap

ntotal
, measures the proportion of points in the

target cloud (noverlap) that overlap with the source cloud, relative to the total number

of points in the target cloud (ntotal). A loop closure is considered a true positive if the

estimated translation error is within 1.5 m and the angular error is within 15° of the

ground truth. Precision is defined as the ratio of true positives to the total detected

loop closures.

We tested the proposed algorithm using different sliding window sizes. A

window size of 0 indicates no sliding window, while sizes 1 and 3 correspond to

the inclusion of 3 and 7 nearby frames for registration, respectively. Across both

datasets, the method with a sliding window of size 3 achieved the highest number

of true positive loop closures. However, its precision decreased when the minimum

overlap ratio threshold was relatively low, which is expected due to the sliding window

strategy. To balance these factors, we set the minimum acceptable overlap ratio
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(a) Result on the airplane dataset.

(b) Result on the USMMA dataset.

Figure 5.5: Performance of inter-robot loop closure detection and registration on
both of our 3-robot fully simulated datasets. Precision (left) and the number of true
positive loop closures detected (right) plotted against the overlap ratio parameter
roverlap, evaluated using various methods.
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Figure 5.6: Optimized trajectories of different local robots using the proposed
DRACo-SLAM2 on the fully simulated 3-robot airplane (top) and USMMA (bottom)
datasets.
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threshold to ϵoverlap = 0.9 for all experiments and accepted a loop closure only if

roverlap > ϵoverlap.

Table 5.1: Runtime for sonar scene descriptor-based inter-robot loop closure and
global ICP registration in DRACo-SLAM [66] (referred to as DRACo1), and graph-
based inter-robot loop closure detection and ICP registration in the proposed DRACo-
SLAM2 (referred to as DRACo2) on both of our 3-robot fully simulated datasets.

Algorithm
Runtime (ms)

Mean Max

DRACo1
Ring Key Matching 0.12 2.05

Go-ICP Registration 361.83 2556.38

DRACo2
Graph Construction & Matching 5.64 32.76

ICP Registration (Window Size 3) 12.69 358.45

We also summarize the runtime of our proposed DRACo-SLAM2 method (re-

ferred to as DRACo2) and its predecessor method, DRACo-SLAM (referred to as

DRACo1) in Tab. 5.1. As shown in Tab. 5.1, the ICP registration module in DRACo2

is, on average, 20 times faster than that in DRACo1 because the time-consuming

global registration step is not required in our approach. This enables us to operate

at a much higher frequency and detect significantly more loop closures compared to

the original method. As shown in Tab. 5.2, our total loop closure detection module

achieves a runtime per timestep that is 10 times faster than DRACo1, enabling more

time-efficient performance.

5.2.2 Performance of Inter-Robot PGO

We also evaluate the performance of inter-robot PGO using both PCM and GCM

on our two 3-robot fully simulated datasets. A robust Cauchy noise model [63] from

GTSAM [17] is employed for all methods to ensure robust performance. Figure 5.6
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Table 5.2: Mean runtime and mean number of inter-robot loop closure
algorithm executions per time step for DRACo1 and DRACo2 on both of our
3-robot fully simulated datasets.

Algorithm Mean (s) Mean No.

DRACo1
Ring Key Matching < 0.01 1

Go-ICP Registration 10.11 28

DRACo2
Graph Construction & Matching < 0.01 1

ICP Registration (Window Size 3) 1.55 122

shows the trajectories optimized locally from robot α on the airplane dataset (left)

and the USMMA dataset (right). We align the estimated trajectory with the ground

truth using EVO 1, treating the robot trajectories from different robots as a single

trajectory with different timestamps. The trajectories are generally smooth, although

drifts caused by local SLAM are observed in the results for the USMMA dataset.

Table 5.3: Absolute Trajectory Error (ATE) in meters for the proposed method
compared to the full Pose Graph Optimization (PGO) method on both of our 3-robot
fully simulated datasets.

Algorithm
USMMA Airplane

α β γ α β γ

DRACo
PCM 1.58 2.43 1.88 1.32 1.36 1.46

GCM 1.43 1.20 1.23 1.33 0.95 1.31

Full PGO
PCM 1.27 1.37 1.52 1.28 1.91 1.63

GCM 1.24 1.41 1.56 1.31 1.91 1.65

Additionally, we perform a quantitative analysis. Tab. 5.3 presents the Root

Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE) for our proposed

two-step PGO method (referred to as DRACo) compared to the widely used full

1https://github.com/MichaelGrupp/evo
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PGO with PCM and the proposed GCM. The ATE is also calculated using EVO.

For each robot, the estimated and ground truth trajectories are concatenated head-

to-tail, starting with the trajectory of the local robot, followed by the trajectories of

neighboring robots in alphabetical order. Since EVO is designed for 6DoF SLAM, we

adapt it for the 3DoF condition by setting z = 0, ϕ = 0, and θ = 0.

As shown in Tab. 5.3, our default configuration, DRACo two-step PGO with

GCM, achieves the best accuracy in most cases. This is attributed to the introduc-

tion of GCM, which efficiently reduces the influence of loop closures with similar

registration errors, an issue that remains inevitable even with a robust noise model.

Furthermore, the adoption of the two-step PGO prevents drifts from neighboring

robots from affecting the results of the local robot. However, as a trade-off, the im-

proved accuracy from neighboring robots has only a limited influence on the state

estimation of the local robot.

5.2.3 Performance on the Real-world Dataset

Table 5.4: Sizes of perception messages for DRACo1 and DRACo2 on the US-
MMA real-world dataset (with simulated 3-robot comms.).

Algorithm Message Type Mean KBits Max KBits

DRACo1
Ring key Descriptor 0.13 0.13

Point Cloud-float32 9.67 27.90

DRACo2
Object Map 1.35 2.25

Point Cloud-float32 9.69 27.90

The proposed algorithm is next evaluated on our real-world dataset from US-

MMA with simulated 3-robot communications. Figure 5.7 illustrates the optimized

trajectories, with results from robots α, β, and γ marked in blue, green, and orange,
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respectively. All detected inter-robot loop closures are indicated in purple for clar-

ity. Since ground truth data is unavailable for this real-world dataset, we align the

constructed point-cloud map with satellite imagery for a more intuitive and visually

interpretable representation of the results.

Tab. 5.4 compares the sizes of perception messages transmitted by the full ver-

sion of DRACo-SLAM (DRACo1) and DRACo-SLAM2 (DRACo2) on the USMMA

real-world dataset. For DRACo1, the Ring Key Descriptor messages used for initial

loop closure candidate detection are compact, with both mean and maximum sizes

under 1 KBits. Object Map messages introduced by DRACo2 are larger but remain

well below the 62.5 kbps bandwidth limit of HS underwater acoustic modems oper-

ating at a range of 300m. The communication bandwidth required for point-cloud

transmission is similar for both methods.
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Figure 5.7: Example DRACo-SLAM2 result with real sonar data. Optimized
trajectories and point clouds from three robots using the proposed DRACo-SLAM2
on a dataset collected at the U.S. Merchant Marine Academy, King’s Point, NY,
aligned with a satellite image. Inter-robot measurement constraints are shown in
purple.
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Chapter 6

Multi-Robot Exploration with Expectation-Maximization

6.1 Expectation-Maximization Exploration

We address an autonomous exploration problem that is tightly coupled with a land-

mark-based SLAM factor graph for a team of n robots. We make the assumption

that the initial states of all robots are sufficiently close to each other, enabling mu-

tual observation among group members and facilitating an efficient map initialization

process. Additionally, we impose a boundary on the exploration task, where the

exploration process terminates upon fully exploring the enclosed environment.

During the exploration process, when a robot α reaches its current target state

athis
α , it becomes necessary to select a new target state anext

α from a set of potential

new states Anext
α . Building upon our previous research on single-robot exploration

[95], we consider a frontier-based strategy that incorporates two key factors: efficient

task allocation among robots [7] and the maintenance of a low-uncertainty map.

When α reaches target state athis
α , ∀anext

α
′ ∈ Anext

α , we define:

X new = X old ∪ X predict ∪ X next. (6.1.1)

X old contains the historical states of all n robots, X predict denotes the set of predicted

robot states for each current target state {athis
i |i ∈ N, i ̸= α} and X next represents

the state sequence of robot α resulting from anext
α

′
. A classification EM algorithm is

used to predict the change of map uncertainty due to anext
α

′
. To avoid the exponential

expansion in potential virtual landmark states, we substitute the E-step with a

classification step (C-step), in which we construct a virtual map using the historical
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data of our robot team:

V∗ = argmax
V

P (V|X old,Zold), (6.1.2)

= V (X old∗,Zold). (6.1.3)

Here, Zold represents the observations associated with X old. V (·) is the inverse ob-

servation model used to estimate the mean and covariance of the virtual map with

the given SLAM estimate X old∗. For a comprehensive explanation of the virtual map

construction process, please refer to our prior work [96]. Subsequently, in the M-

step, we perform another maximum a posteriori estimation to estimate X new (and

choose X next):

X new∗ = argmax
Xnew

P (X new|V∗,Znew), (6.1.4)

Znew = Zold ∪ Zpredict. (6.1.5)

The updated observation set, Znew, is a combination of both previously gathered

observations, Zold, and anticipated future observations, Zpredict. These predicted

observations are determined via the measurement models outlined in equation 2.2.1,

equation 2.2.2, and equation 2.2.3, based on the virtual map V∗ and the target state

assigned to each robot. Thus, we assess the overall local map uncertainty of robot

α by computing the sum of the individual uncertainties for each map element in the

virtual map V(·) derived from equation 6.1.3, considering only the optimized states
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of robot α, X new
α

∗:

UM = ϕ(ΣV (Xnew
α

∗,Znew)), (6.1.6)

=
∑

vi∈V (Xnew
α

∗,Znew)

ϕ(Σvi
). (6.1.7)

Each element vi contributes to the sum based on its covariance Σvi , and in this

chapter, we employ the A-Optimality metric as our uncertainty criterion ϕ.

To optimize the distribution of exploration tasks among the robots, we uti-

lize a distance evaluation metric inspired by the methodology presented in [7]. For

each potential new target state at
α
′
assigned to robot α at time t, we quantify the

effectiveness of task allocation using UT :

UT =
∑

ai
β∈A,β ̸=α

h(∥at
α

′
− ai

β∥2), (6.1.8)

h(d) =


1− d

dmax
d < dmax

0 d ≥ dmax

. (6.1.9)

Here, ∥·∥2 represents the L2 norm, and A denotes the collection of all historical target

states for all robots. Based on this, we can define the new target state for robot α

as one of the potential target states that optimally balances the factors UM , UT and

the Euclidean distance to target state factor, UD, with scale factors λ0, λ1, λ2:

anext
α = argmin

at
α
′

(λ0UM + λ1UT + λ2UD). (6.1.10)
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Figure 6.1: System Architecture. The pipeline of the proposed approach.

6.2 Multi-Robot Expectation-Maximization Exploration Algorithm

In this section, we discuss the details of the proposed expectation-maximization al-

gorithm. Figure 6.1 shows the pipeline of the proposed algorithm. We consider a

situation where a group of robots collaborates, and each individual robot within the

group is furnished with both motion and perception sensors. A centralized or de-

centralized factor-graph based SLAM algorithm is assumed to operate at a specific

frequency. The robot team shares their optimized SLAM trajectories, landmark po-

sitions and history of chosen target states among its members. However, individual

robots maintain virtual maps locally using the latest SLAM estimates.

After a robot α successfully reaches its current target state, its virtual map

is updated and a group of potential new target states Anext
α is chosen from the vir-

tual map. Subsequently, the virtual observation is synthesized utilizing the prevailing

environmental knowledge. Next, the expectation-maximization based uncertainty

propagation computes the potential impact of the target state under consideration,

leading to an update in the virtual map’s covariances. The new target goal is then se-

lected according to the utility function (equation 6.1.10). Finally, the motion planner
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is initiated to formulate a series of actions leading robot α to the new target state.

6.2.1 Virtual Map

(a) Choosing a revisiting frontier (blue, with
red star) driven by the significant uncertainty
in the map.

(b) Choosing an exploring frontier (green,
with red star) due to relatively low map un-
certainty.

Figure 6.2: Problem setup.

As depicted in equation 6.1.3, the virtual map V of a finite environment is

generated from the robot states X and their associated observations Z. Assuming

that V comprises b map cells vi referred to as virtual landmarks, the posterior can be

redefined as follows:

P (V|X ,Z) =
∏
vi∈V

P (vi|X ,Z). (6.2.1)

The likelihood of virtual landmark vi being observed is q(vi) = E[P (vi|X ,Z)]. When

this virtual landmark is observed by multiple robot states, the procedure for updating

q(vi) is similar to updating map cell values in an occupancy grid map [91]. We assume

the virtual landmark vi is observed by a robot state xα,j, with its estimated value

denoted x̂α,j, and a marginal covariance Σxα,j
. We can compute the covariance:
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Σvi
= H · Σxα,j · H⊺. Here, H =

∂g(xα,j ,vi)

∂xα,j
|x̂α,j represents the Jacobian matrix

obtained by differentiating the landmark observation model g(xα,j,vi) with respect

to estimated robot state x̂α,j. We utilize Covariance Intersection to compute the

covariance of a virtual landmark that is observed by multiple robot states, as detailed

in [96]. Figure 6.2 shows inter-robot virtual maps built from both local robot states

and neighbors’ robot states received by local robot α. In this 100m×80m virtual map

created by a two-robot team, gray ellipses depict the uncertainty of visited cells. The

green robot’s position is denoted by a black star, and its newly selected target state

is represented by a red star. The current position of the other robot on the team

is marked as a black rectangle. Landmarks are expressed by black x’s. Potential

frontiers emerge along the boundary between the explored and unexplored areas.

The three types of frontiers—exploring, revisiting, and rendezvous—are denoted by

their respective colors: green, blue, and purple. The observed regions are highlighted

in white; gray ellipses show covariances describing the uncertainty of the map’s cells.

6.2.2 Uncertainty Propagation

As depicted in figure 6.2, most potential target states are chosen from the perimeters

of the observed regions. Three types of frontiers are identified for selection: explo-

ration frontiers close to the robot’s latest position, revisiting frontiers near previously

visited landmarks, and rendezvous frontiers, which are the current target positions of

neighboring robots. Subsequently, for each potential target, a set of waypoints X new

is uniformly sampled along the shortest path connecting the robot’s current state and

the next potential target state. Additionally, waypoints X predict are generated to con-

nect the present states of all robots with their respective target states. The process

of generating virtual observations Zpredict along the paths to these target states is

depicted in figure 6.3. Nodes representing the current robot states are distinguished
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Figure 6.3: EM-based uncertainty propagation with virtual observations.

by red edges. For every potential next target state (shown in pink), a trajectory

simulation is executed, leading to the generation of a sequence of virtual observa-

tions indicated by dashed arrows. Simultaneously, we model the future states and

observations of other robots as they approach their individual current target states.

Virtual odometry measurements are created between adjacent waypoints using equa-

tion 2.2.1. For virtual landmark observations, equation 2.2.2 is employed, generating

observations between previously observed landmarks and nearby waypoints. When

two robots are within each other’s sensing range at the same timestep, a virtual robot

observation is produced using equation 2.2.3. Following this, virtual observations are

added into the SLAM graph to propagate uncertainty. The step-by-step procedure is

outlined comprehensively in Algorithm 1.
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Algorithm 1: Uncertainty Propagation

Global: Latest SLAM Graph G,andInter-robot Virtual Map V∗

Input: Potential frontier state at
α
′
, Current robot states X t, Current Target

States of Neighbors At

Output: Optimized robot states X new∗

X predict ← ∅
foreach at

γ ∈ At,xt
γ ∈ X t do

X t:∗
γ ← GenerateVirtualWaypoints(at

γ,x
t
γ)

X predict ← Xt
γ ∪ X predict

X next ←GenerateVirtualWaypoints(at
α
′
,xt

γ)

# Calculate virtual observations
Zpredict ← VirtualObserve(V∗,X predict ∪ X next)

# M-step: graph optimization
UpdateGraph(G,X predict ∪ X next)

X new∗ ← OptimizeGraph(G)
return X new∗

6.2.3 Map Uncertainty Utility Computation

We compute the uncertainty of map cells by considering both the likelihood of the

existing virtual map V∗ and the optimized robot states of robot α, X new
α

∗ ⊂ X new∗.

Referencing figure 6.2b, it is evident that despite the purple robot’s trajectory being

impacted by localization uncertainty due to accumulated odometry error, this un-

certainty is partially mitigated by the historical trajectory of the green robot, which

exhibits relatively lower uncertainty. The construction of an inter-robot virtual map

for map uncertainty estimation could potentially lead to conflicts in decision-making

for a local robot. As outlined in algorithm 2, we generate a local virtual map denoted

as Vnew
α

∗ for robot α. This map is constructed using X new
α

∗ and corresponding virtual

observations Znew
α . Then, we compute the uncertainty utility of the map by consider-

ing the overlapping observed regions common to both the current inter-robot virtual

map V∗ and the predicted local virtual map Vnew
α

∗, via equation 6.1.6.
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Algorithm 2: Compute UM of potential frontier at
α
′

Input: Inter-robot Virtual Map V∗, Local Virtual Map Vnew
α

∗

Output: Map uncertainty utility factor UM

UM ← 0
for i← 0 to b do

vi,g ∈ V∗, vi,l ∈ Vnew
α

∗

# qmin: minimum accepted probability of observed.
if q(vi,l) > qmin and q(vi,g) > qmin then

UM ← UM + trace(Σvi,l
)

return UM

6.2.4 Complexity Analysis

In this section, we analyze the time complexity of the Expectation-Maximization

Explorer shown in figure 6.1. For a team of n robots, each with a maximum of

Nx historical robot states, updating a robot state in the virtual map takes Tv time,

resulting in a potential inter-robot virtual map construction time of n ·Nx ·Tv. During

frontier generation, detecting exploration bounds (time Tb) containing Nc virtual

landmarks and observing each landmark (time Tl) contributes to a step duration of

Tb +Nc · Tl. Frontier selection generates Nf frontiers. Crafting virtual waypoints (up

to Nw) and conducting virtual robot rendezvous checks (time Tr) per frontier results

in a total frontier generation time of (Nf +n− 1) · (Tl +Tr). Utilizing iSAM2 [50] for

uncertainty propagation (time Tu per update) leads to a combined propagation time

of Nf · Tu. Constructing a local virtual map requires Nx · Tv time. The most time-

intensive steps involve iSAM2’s uncertainty propagation (O(n2.36) complexity for n

states) and covariance intersection during virtual map creation (O(s3) complexity

with s nonzero matrix block size) [49].
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6.3 Experiments

6.3.1 Experiments in 2D simulation environments

We perform simulated experiments within environments of varied size, employing

randomly generated landmarks. The errors described below define 95% confidence

intervals. Similar to our previous work [95], we assume each robot is furnished with

a sonar with range error 0.002m, bearing error 0.5◦, and max. sensing range 7.5m.

Each robot also performs inertial dead reckoning; its gyro and accelerometer yield

errors of .5◦ and 0.05m. The robot has the capability to rotate by 15◦ during each

action, maintaining a constant speed of 1m/s. It is restricted to moving solely in the

direction of its current heading. At the beginning of each trial, we ensure that all

robots are located within the sensing range of their teammates to guarantee a proper

initialization of the SLAM framework. To navigate towards uncharted territory, we

utilize the Artificial Potential Field (APF) method, detailed in [29], to avoid collision.

The boundaries along the environment’s edges are restricted from selection as fron-

tiers to prevent the robot from exiting the mission area. We compare our proposed

approach, denoted EM, with two advanced multi-robot exploration algorithms: the

coordinated multi-robot exploration method by Burgard et al. [7], referred to as CE

in subsequent sections, and the coperative multi-robot belief space planning technique

introduced by Indelman et al. [45], denoted as BSP subsequently. Identical frontier

selection criteria and virtual observation generation techniques are employed for both

methods.

The CE planner [7] places emphasis on optimizing task distribution among
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robots, employing a utility function that takes task allocation into account:

UCE = λ0UD + λ1UT . (6.3.1)

In this context, both UD and UT are computed the same way as outlined in equation

6.1.10. In our experiment, we select λ0 = 1 and λ1 = 10. The BSP planner [45]

takes into account both exploration efficiency and localization uncertainty, employing

a similar virtual observation strategy as ours. This leads to the formulation of the

following utility function:

UBST = λ0UD + λ1UM , (6.3.2)

UM =
∑

xi∈Xpredict∗∪Xnext∗

ϕA(
√
Σxi

). (6.3.3)

We choose λ0 as 5 and λ1 as 1. Here, ΦA(·) denotes the trace of the matrix,

and X predict∗ and X next∗ are computed through the maximum a posteriori process:

(19)

X predict∗,X next∗ = argmax
Xpredict,Xnext

P (X predict,X next|Zpredict,L).

As the BSP planner exclusively takes into account the localization uncertainty of

forthcoming steps, it overlooks the potential advantages arising from revisiting land-

marks previously explored by the team. Since only the uncertainties at individual

robot states are taken into account, UM might become imbalanced and thus not ef-

fectively depict the overall localization uncertainty across the entire environment,

especially in the presence of varying vehicle speeds.

A quantitative analysis using two distinct sizes of random generalized en-



100

vironments is conducted: one measuring 100m × 100m, and the other measuring

200m× 200m. Across 50 trials, each trial involves 20 landmarks with a radius of 1m

within the environment. We introduce three robots into the environment to prevent

rendezvous and landmark revisitation from becoming trivially achievable in scenarios

involving a large number of robots. The landmark positions are selected randomly,

ensuring a minimum distance of 10m between each pair of landmarks. For each trial,

the robots initiate their positions from the middle left region of the environment, with

their initial positions also being chosen randomly.

We test two distinct configurations for the proposed EM explorer: one with

λ0 = 1, λ1 = 0, λ2 = 10 referred to as EM 2, and the other with λ0 = 1, λ1 =

20 · (1 − r), λ2 = 10 referred to as EM 3, where r denotes the ratio of the explored

area in the environment. For the 100m×100m environment, we employ a virtual map

cell size of cv = 2m, while for the 200m× 200m environment, we choose a cell size of

cv = 4m for the virtual map. We use three statistics to evaluate the performance of

the proposed algorithm:

• Robot localization error: root-mean-square error (RSME) of the optimized tra-

jectories of all robots from the SLAM framework.

• Landmark position error: RSME of the positions of all landmarks observed by

the robot teams.

• Explored ratio: The proportion of the area considered as observed in the inter-

robot virtual map.

Figure 6.4 and figure 6.5 depict the outcomes across different scenarios within

smaller and larger environments, respectively. In figure 6.4, robots are exploring

the environment by constructing a virtual map with cell size of 2m. At left, the
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Figure 6.4: 50 trials of three robots navigating in 100m x 100m environments with
20 landmarks, each with a radius of 1m.

Figure 6.5: 50 trials of three robots navigating in 200m x 200m environments with
20 landmarks, each with a radius of 1m.

average robot localization error for each robot state, at center, the average landmark

position error for each landmark, and at right, the explored ratio, all plotted against

distance. In figure 6.5, they are exploring the environment by constructing a virtual

map with cell size of 4m. At left, the average robot localization error for each robot

state, at center, the average landmark position error for each landmark, and at right,

the explored ratio, all plotted against distance. EM 2 and EM 3 exhibit superior

accuracy in localizing both robot and landmark states when compared to CE and

BSP. This improvement stems from the fact that the proposed approach takes into

account not only the forthcoming interactions among robots but also the impact of the

team’s historical actions. Nonetheless, it’s worth noting that the proposed method

demonstrates lower exploration efficiency when contrasted with both CE and BSP,

especially in smaller environments. This trade-off is made in favor of achieving higher

accuracy. When considering the task allocation element, the proposed approach in

the EM 3 configuration demonstrates better exploration efficiency compared to the
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EM 2 configuration.

Figure 6.6: Five robots navigating a 150m x 150m environment.

Figure 6.6 and figure 6.7 present qualitative results of the proposed algorithm’s

EM 3 configuration. In figure 6.6, five robots navigate themselves in a 150m× 150m

environment with 40 landmarks. The active robot seeking its next target state is

highlighted by a black star, while its chosen goal is marked with a red star. In the

left map, the cyan robot revisits a previously explored landmark due to high map

uncertainty (gray ellipses in each grid cell). After a loop closure in the right map,

overall localization uncertainty decreases, prompting the robot to select the nearest

unexplored frontier for its next move.

Three robots navigate a 200m×200m environment in figure 6.7, with only one

landmark observed thus far. After some time, the accumulated localization uncer-

tainty is relatively high (left), prompting the green robot to decide to rendezvous with

its pink neighbor. This strategic move leads to a reduction in uncertainty, thanks to

the inter-robot loop closure (middle). Concurrently, the light blue robot also accumu-

lates errors and opts to rendezvous with its teammates. Once all three robots meet

each other (right), the loop is closed, and uncertainty is subsequently propagated and
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Figure 6.7: Three robots explore a 200m x 200m environment.

reduced.

6.4 Conclusions

This chapter introduces multi-robot exploration using expectation-maximization. We

present an asynchronous exploration framework suitable for both centralized and de-

centralized robot teams, accounting for map uncertainty. The inclusion of rendezvous

frontiers enhances the system’s adaptability to environments with sparse features.

The incorporation of a virtual map enables the estimation of future influence and

interactions within the robot teams. The utilization of inter-robot and local maps

heightens the robot’s sensitivity to the accumulation of localization uncertainty in its

trajectory.
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Chapter 7

Conclusions and Future Work

This dissertation explores the integration of factor graph optimization into multiple

aspects of perception and navigation, including motion planning, SLAM, and au-

tonomous exploration. We introduce MGPMP, a Gaussian process motion planning

approach tailored for UUVs conducting seafloor terrain-following missions while ac-

counting for ocean currents. Additionally, we present distributed multi-robot SLAM

algorithms designed for various robotic platforms equipped with different sensor

modalities: DiSCo-SLAM, developed for ground vehicles with 3D LiDAR, employs

a two-step global and local factor graph optimization strategy. SGM-SLAM, de-

signed for legged robots equipped with 3D LiDAR and cameras, enables data-efficient

object-level association through scene graph matching—even in scenarios with mini-

mal trajectory overlap, where traditional methods based on compact sensor descrip-

tors often fail. DRACo-SLAM2, intended for underwater robots with imaging

sonars, achieves fast and robust inter-robot data association through graph match-

ing and group-wise consistent measurement set maximization. Finally, we propose a

multi-robot autonomous exploration algorithm based on expectation maximization,

which balances exploration efficiency with SLAM localization accuracy.

For future work, we aim to further enhance the autonomy of mobile robots

reliant upon factor graphs for perception and navigation, ensuring more robust per-

formance in real-world robotic applications. Goals for future work include:

• Expanding the mission-oriented Gaussian process motion planning framework

to address challenges in belief-space planning.
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• Integrating our expectation maximization inspired autonomous exploration al-

gorithm with DRACo-SLAM2 on unmanned underwater platforms, improving

its scalability, and evaluating its performance in real-world environments.

• Combining multi-robot SLAM with scene graph-based algorithms and large

language models (LLMs) to enable human-robot interactive motion planning

and decision-making.
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[74] L. Petrović, I. Marković, and M. Seder. Multi-agent Gaussian Process Mo-



115

tion Planning Via Probabilistic Inference. IFAC-PapersOnLine, 51(22):160–

165, 2018.

[75] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone,

and J. A. Castellanos. A Survey on Active Simultaneous Localization and

Mapping: State of the Art and New Frontiers. IEEE Transactions on Robotics,

39(3):1686–1705, 2023. doi: 10.1109/TRO.2023.3248510.

[76] E. Potokar, K. Lay, K. Norman, D. Benham, S. Ashford, R. Peirce, T. B.

Neilsen, M. Kaess, and J. G. Mangelson. HoloOcean: a Full-Featured Marine

Robotics Simulator for Perception and Autonomy. IEEE Journal of Oceanic

Engineering, 49(4):1322–1336, 2024. doi: 10.1109/JOE.2024.3410290.

[77] C. Qi, T. Ma, Y. Li, L. Lv, and Y. Ling. An Efficient Loop Closure Detec-

tion Method for Communication-constrained Bathymetric Cooperative SLAM.

Ocean Engineering, 304:117720, 2024.

[78] Radu Bogdan Rusu and Steve Cousins. 3D Is Here: Point Cloud Library (PCL).

IEEE International Conference on Robotics and Automation (ICRA), 2011.

[79] A. Radwan, A. Tourani, H. Bavle, H. Voos, and J. L. Sanchez-Lopez. UAV-

assisted Visual SLAM Generating Reconstructed 3D Scene Graphs in GPS-

denied Environments. International Conference on Unmanned Aircraft Systems

(ICUAS), pages 1109–1116, 2024.

[80] T. Regev and V. Indelman. Multi-robot Decentralized Belief Space Plan-

ning in Unknown Environments Via Efficient Re-evaluation of Impacted Paths.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 5591–5598, 2016.

[81] L. Riazuelo, J. Civera, and J. M. Montiel. C2tam: a Cloud Framework for

Cooperative Tracking and Mapping. Robotics and Autonomous Systems, 62(4):

401–413, 2014.



116

[82] M. A. Richards et al. Fundamentals of Radar Signal Processing. 1, 2005.

[83] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard. SE-Sync: a

Certifiably Correct Algorithm for Synchronization Over the Special Euclidean

Group. The International Journal of Robotics Research, 38(2-3):95–125, 2019.

[84] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and

L. Carlone. Kimera: From SLAM to Spatial Perception with 3D Dynamic Scene

Graphs. The International Journal of Robotics Research, 40(12-14):1510–1546,

2021.

[85] M. M. Santos, G. B. Zaffari, P. O. Ribeiro, P. L. Drews-Jr, and S. S. Botelho.

Underwater Place Recognition Using Forward-looking Sonar Images: a Topo-

logical Approach. Journal of Field Robotics, 36(2):355–369, 2019.

[86] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas. Anytime

Planning for Decentralized Multirobot Active Information Gathering. IEEE

Robotics and Automation Letters, 3(2):1025–1032, 2018.

[87] J. L. Schonberger and J.-M. Frahm. Structure-from-motion Revisited. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4104–

4113, 2016.

[88] T. Shan and B. Englot. Lego-loam: Lightweight and Ground-optimized Lidar

Odometry and Mapping on Variable Terrain. IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 4758–4765, 2018.

[89] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. Lio-

sam: Tightly-coupled Lidar Inertial Odometry Via Smoothing and Mapping.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 5135–5142, 2020.

[90] I. A. Sucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library.

IEEE Robotics & Automation Magazine, 19(4):72–82, 2012.



117

[91] S. Thrun. Probabilistic Robotics. Communications of the ACM, 45(3):52–57,

2002.

[92] Y. Tian, K. Khosoussi, D. M. Rosen, and J. P. How. Distributed Certifiably

Correct Pose-graph Optimization. IEEE Transactions on Robotics, 37(6):2137–

2156, 2021.

[93] Y. Tian, Y. Chang, L. Quang, A. Schang, C. Nieto-Granda, J. P. How, and

L. Carlone. Resilient and Distributed Multi-robot Visual Slam: Datasets, Ex-

periments, and Lessons Learned. IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pages 11027–11034, 2023.

[94] M. Tzes, N. Bousias, E. Chatzipantazis, and G. J. Pappas. Graph Neural

Networks for Multi-robot Active Information Acquisition. IEEE International

Conference on Robotics and Automation (ICRA), pages 3497–3503, 2023.

[95] J. Wang and B. Englot. Autonomous Exploration with Expectation-

maximization. Robotics Research: International Symposium ISRR, pages 759–

774, 2020.

[96] J. Wang, F. Chen, Y. Huang, J. McConnell, T. Shan, and B. Englot. Vir-

tual Maps for Autonomous Exploration of Cluttered Underwater Environments.

IEEE Journal of Oceanic Engineering, 47(4):916–935, 2022.

[97] Y. Wang, W. Thanyamanta, and N. Bose. Cooperation and Compressed Data

Exchange Between Multiple Gliders Used to Map Oil Spills in the Ocean. Ap-

plied Ocean Research, 118:102999, 2022.

[98] S. B. Williams, O. Pizarro, and B. Foley. Return to Antikythera: Multi-session

Slam Based Auv Mapping of a First Century Bc Wreck Site. Field and Service

Robotics: Results of the 10th International Conference, pages 45–59, 2016.

[99] K. Ye, S. Dong, Q. Fan, H. Wang, L. Yi, F. Xia, J. Wang, and B. Chen. Multi-

robot Active Mapping Via Neural Bipartite Graph Matching. IEEE Confer-



118

ence on Computer Vision and Pattern Recognition (CVPR), pages 14839–14848,

2022.

[100] J. Yu and S. Shen. SemanticLoop: Loop Closure with 3D Semantic Graph

Matching. IEEE Robotics and Automation Letters, 8(2):568–575, 2022.

[101] J. Yu, J. Tong, Y. Xu, Z. Xu, H. Dong, T. Yang, and Y. Wang. Smmr-

explore: Submap-based Multi-robot Exploration System with Multi-robot

Multi-target Potential Field Exploration Method. IEEE International Con-

ference on Robotics and Automation (ICRA), pages 8779–8785, 2021.

[102] F. Zhang, D. Xu, and C. Cheng. An Underwater Distributed SLAM Approach

Based on Improved GMRBnB Framework. Journal of Marine Science and

Engineering, 11(12):2271, 2023.

[103] P. Zhang, H. Wang, B. Ding, and S. Shang. Cloud-based Framework for Scal-

able and Real-time Multi-robot Slam. IEEE International Conference on Web

Services (ICWS), pages 147–154, 2018.

[104] Y. Zhu, Y. Kong, Y. Jie, S. Xu, and H. Cheng. Graco: a Multimodal Dataset

for Ground and Aerial Cooperative Localization and Mapping. IEEE Robotics

and Automation Letters, 8(2):966–973, 2023.

[105] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.

Dellin, J. A. Bagnell, and S. S. Srinivasa. Chomp: Covariant Hamiltonian Opti-

mization for Motion Planning. The International Journal of Robotics Research,

32(9-10):1164–1193, 2013.



119

Vita

Yewei Huang

Education

Stevens Institute of Technology, Hoboken, NJ

Ph.D. in Mechanical Engineering August 2019 — May 2025

Tongji University, Shanghai, China

M.E. in Surveying and Mapping September 2016 — March 2019

Tongji University, Shanghai, China

B.E. in Geographic Information System September 2012 — June 2016

Work Experience

SRI International, NJ

Summer Research Internship May 2024 — August 2024

Publications

Y. Huang, T. Shan, F. Chen and B. Englot “DiSCo-SLAM: Distributed scan

context-enabled multi-robot lidar slam with two-stage global-local graph optimiza-

tion” IEEE Robotics and Automation Letters, 7(2):1150–1157, 2021.

Y. Huang, X. Lin, M. Hernandez-Rocha, S. Narain, K. Pochiraju and B. En-

glot “Mission-oriented Gaussian Process Motion Planning for UUVs over Com-

plex Seafloor Terrain and Current Flows” IEEE Robotics and Automation

Letters,9(2):1780-1787, 2024.

Y. Huang, X. Lin, and B. Englot “Multi-Robot Autonomous Exploration and Map-

ping Under Localization Uncertainty with Expectation-Maximization” 2024 IEEE

International Conference on Robotics and Automation (ICRA), 7236–7242, 2024.



120

Y. Huang, T. Shan, A. Rajvanshi, N. Chowdhury, Y. Li, B. Englot, and H.-P. Chiu

“SGM-SLAM: Scene Graph Matching for Data-Efficient Distributed SLAM” Submit-

ted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

under review, 2025.

Y. Huang, J. McConnell, X. Lin, and B. Englot “DRACo-SLAM2: Distributed

Robust Acoustic Communication-efficient SLAM for Imaging Sonar Equipped Un-

derwater Robot Teams with Object Graph Matching” Submitted to IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), under review, 2025.

F. Chen, J. Martin, Y. Huang, J. Wang, and B. Englot ”Autonomous exploration

under uncertainty via deep reinforcement learning on graphs“ 2020 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 6140–6147, 2020.

F. Chen, P. Szenher, Y. Huang, J. Wang, T. Shan, B. Shi and B. Englot “Zero-

shot reinforcement learning on graphs for autonomous exploration under uncertainty”

2021 IEEE International Conference on Robotics and Automation (ICRA), 5193–

5199, 2021.

J. McConnell, Y. Huang, P. Szenher, I. Collado-Gonzalez and B. Englot “DRACo-

SLAM: Distributed Robust Acoustic Communication-efficient SLAM for Imaging

Sonar Equipped Underwater Robot Teams” 2022 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 8457–8464, 2022.

J. Wang, F. Chen, Y. Huang, J. McConnell, T. Shan, and B. Englot “Virtual maps

for autonomous exploration of cluttered underwater environments” IEEE Journal of

Oceanic Engineering, 47(4):916–935, 2022.

X. Lin, Y. Huang, D. Sun, T.-Y. Lin, B. Englot, R. M. Eustice, and M. Ghaffari “A

Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios”

IEEE Access, 11, 97239–97249, 2023.

X. Lin, P. Szenher,Y. Huang, and B. Englot “Distributional Reinforcement Learning

Based Integrated Decision Making and Control for Autonomous Surface Vehicles”

IEEE Robotics and Automation Letters, 2024.



121

K. Doherty, A. Papalia, Y. Huang, D. Rosen, B. Englot, and J. Leonard “MAC:

Maximizing Algebraic Connectivity for Graph Sparsification” arXiv e-prints, arXiv–

2403, 2024.

Y. Li, Y. Huang, B. Gaudel, H. Jafarnejadsani, and B. Englot “CVD-SfM: A Cross-

View Deep Front-end Structure-from-Motion System for Sparse Localization in Multi-

Altitude Scenes” Submitted to IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), under review, 2025.


	Abstract
	Acknowledgments
	Funding Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Gaussian Process Motion Planning (GPMP)
	Multi-Robot Simultaneous Localization and Mapping (SLAM)
	Multi-Robot SLAM with Scene Graphs
	Multi-Robot SLAM for underwater environments

	Multi-Robot Autonomous Exploration

	Mission-oriented Gaussian Process Motion Planning
	Mission-oriented GPMP for UUVs over Current Flows
	MGPMP Algorithm
	Gaussian Prior and GP Constant Speed Prior
	Obstacle Avoidance with Signed Distance Field
	Seafloor Terrain Following
	Robot Kinematics and the Influence of Current Flows

	Experiments
	Experimental Setup
	Performance of Collision Avoidance
	Performance of Seafloor Terrain Following
	The Influence of Current Flows

	Conclusions

	Multi-Robot LiDAR Simultaneous Localization and Mapping
	Distributed Multi-Robot SLAM with Two-Stage Global-Local Graph Optimization
	DiSCo (Distributed Scan Context) - SLAM Algorithm
	Incremental PCM
	Two-Stage Global and Local Optimization
	Message Passing Between Robots

	SGM (Scene Graph Matching) - SLAM Algorithm
	Scene Graph Construction
	Scene Graph Matching
	Transformation Estimation
	Inter-robot Loop Closure
	Communication Between Robots

	Experiments
	DiSCo-SLAM
	SGM-SLAM

	Conclusions

	Multi-Robot Underwater Simultaneous Localization and Mapping
	Local SLAM, Point-cloud Map and Object Map
	Local SLAM
	Object Graph Construction and Matching
	Scan Registration
	Group-wise Consistent Measurement Set Maximization
	Communication

	Experiments
	Performance of Inter-Robot Loop Closure Detection
	Performance of Inter-Robot PGO
	Performance on the Real-world Dataset


	Multi-Robot Exploration with Expectation-Maximization
	Expectation-Maximization Exploration
	Multi-Robot Expectation-Maximization Exploration Algorithm
	Virtual Map
	Uncertainty Propagation
	Map Uncertainty Utility Computation
	Complexity Analysis

	Experiments
	Experiments in 2D simulation environments

	Conclusions

	Conclusions and Future Work
	Bibliography
	Vita

