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Abstract— We propose an autonomous exploration algorithm
designed for distributed multi-robot teams, which takes into
account map and localization uncertainties of range-sensing
mobile robots. Virtual landmarks are used to quantify the
combined impact of process noise and sensor noise on map
uncertainty. Additionally, we employ an iterative expectation-
maximization inspired algorithm to assess the potential out-
comes of both a local robot’s and its neighbors’ next-step
actions. The results of our experiments demonstrate the algo-
rithm’s capacity to strike a balance between curbing map un-
certainty and achieving efficient task allocation among robots.

I. Introduction
Autonomous exploration and mapping describes a single

robot or a group of robots navigating themselves in an
unknown or partially known environment without human
intervention. An accurate environment map constructed by
the robots serves as the fundamental basis for all subsequent
specific robot tasks [1]. While the maturity of autonomous
exploration for ground and aerial robots has been notably
demonstrated, its application within marine environments
remains a subject of ongoing inquiry [2]. In spite of the
widespread coverage of Global Navigation Satellite System
(GNSS) signals in most maritime regions, there exist many
marine locations where GNSS signals are vulnerable due
to obstruction or attenuation. In these areas, robots face a
higher risk of collisions, emphasizing the critical need for an
accurate environment map. However, deploying exploration
in such contexts is a particular challenge for robot teams. This
is primarily due to the high uncertainty introduced by unique
environmental factors pertaining to the marine environment,
especially when operating below the ocean’s surface.

Autonomous exploration and mapping have been a vigor-
ously discussed subject for several decades. Early research
has primarily centered around optimizing task distribution
among team members [3], [4]. As Simultaneous Localization
and Mapping (SLAM) techniques have advanced, various
approaches [5], [6], [7], [8], [9] have incorporated the
concept of map uncertainty into autonomous exploration.
These strategies consider Gaussian noise sensor models and
Gaussian noise kinematic models, aiming to strike a balance
between exploration efficiency and managing uncertainties in
the resulting maps. Although these techniques may differ in
terms of their map representation and merging techniques,
they share a similar utility function that takes into account
both the information gain of the latest generated map and the
required travel distance to the waypoints under consideration.
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However, in the process of computing information gain, these
techniques either ignore uncertainty propagation or have
only propagated uncertainty locally, which is inadequate for
situations with high localization uncertainty.

Building upon our previous work on single robot
expectation-maximization (EM) inspired exploration [10],
we introduce an asynchronous EM exploration algorithm
for both centralized and distributed multi-robot teams. The
algorithm is tightly coupled with a factor graph SLAM
system. Upon a robot’s arrival at the target position while
the exploration remains ongoing, a virtual map is constructed
based on the SLAM result to gauge the prevailing map
uncertainty. Subsequently, for each potential new target, we
execute an expectation-maximization procedure to assess the
potential information gain associated with the forthcoming
actions of the robot and its interactions with neighboring
robots. Selection of a new target goal position is then
determined by considering both the collective information
gain of the entire team within the virtual map, and the
efficiency of task allocation among robots.

Our research introduces several innovative contributions:
• An asynchronous multi-robot exploration framework

catering to both centralized and distributed SLAM sys-
tems, taking into account efficient task allocation for
exploration and addressing map uncertainty.

• Incorporating an expectation-maximization inspired
technique to assess the future impact and interactions
of a robot with its neighboring entities.

• Introducing an efficient inter-robot and local map un-
certainty propagation approach, tailored to scenarios
involving multiple robots and localization uncertainty.

II. Problem Formulation and Approach
We address an autonomous exploration problem that is

tightly coupled with a SLAM factor graph for a team of 𝑛

robots. We make the assumption that the initial states of all
robots are sufficiently close to each other, enabling mutual
observation among group members and facilitating an efficient
map initialization process. Additionally, we impose a bound-
ary on the exploration task, where the exploration process
terminates upon fully exploring the enclosed environment.
A. Simultaneous Localization and Mapping

Let 𝑁 = {1, 2, · · · , 𝑛} be the set of 𝑛 robots. For each robot
𝛼 ∈ 𝑁 , we denote its state at timestamp 𝑖 as x𝛼,𝑖 . The robot
odometry observation between present state x𝛼,𝑖 and previous
state x𝛼,𝑖−1 is described by the equation:

z𝛼,𝑖−1
𝛼,𝑖

= 𝑓 (x𝛼,𝑖−1, x𝛼,𝑖) + 𝜖 𝛼,𝑖−1
𝛼,𝑖

. (1)



Assume robot 𝛼 observes a landmark state l 𝑗 at timestamp 𝑖,
we can describe the landmark observation:

z𝛼,𝑖
𝑗

= 𝑔(x𝛼,𝑖 , l 𝑗 ) + 𝜖 𝛼,𝑖𝑗
. (2)

If another robot 𝛽 is observed at timestamp 𝑖 by robot 𝛼,we
refer to this as the robot rendezvous observation:

z𝛼,𝑖
𝛽, 𝑗

= 𝑓 (x𝛼,𝑖 , x𝛽, 𝑗 ) + 𝜖 𝛼,𝑖𝛽, 𝑗
, (3)

where 𝑓 (·) denotes the state transformation between robot
states, 𝑔(·) is the state transformation from robot state to
landmark state, and 𝜖

𝛼,𝑖−1
𝛼,𝑖

, 𝜖
𝛼,𝑖
𝑗

and 𝜖
𝛼,𝑖

𝛽, 𝑗
are zero-mean

Gaussian noise variables.
At present timestamp 𝑡, X = {x𝛼

𝑖
|𝛼 ∈ 𝑁, 𝑖 ∈ [0, 𝑡]}

represents the set containing the states of all 𝑛 robots
from the initial timestamp 0 to the present timestamp 𝑡.
L = {l0, l1, . . . , l𝑚} is the set of landmarks observed until
timestamp 𝑡. Additionally, letZ be the set containing odometry
observations, landmark observations and robot rendezvous
observations from all timestamps. The SLAM problem can
be represented as a maximum a posteriori estimation problem
[11]:

X∗,L∗ = arg max
X,L

𝑃(X,L|Z). (4)

B. Expectation-Maximization Exploration
During the exploration process, when a robot 𝛼 reaches its

current target state athis
𝛼 , it becomes necessary to determine a

new target state anext
𝛼 . Building upon our previous research

on single-robot exploration [10], we consider a frontier-
based strategy that incorporates two key factors: efficient task
allocation among robots [3] and the maintenance of a relatively
low uncertainty map.

To assess the map uncertainty, we create a virtual map V
using the estimated robot and landmark states obtained from
the SLAM step. For a comprehensive explanation of the virtual
map construction process, please refer to our prior work [12].
When a target robot 𝛼 reaches its target state athis

𝛼 , we define:

Xnew = Xold ∪ Xpredict ∪ Xnext. (5)

With Xold containing the historical states of all 𝑛 robots,
Xpredict denoting the set of predicted robot states for each
current target state {athis

𝑖
|𝑖 ∈ 𝑁, 𝑖 ≠ 𝛼} and Xnext representing

the robot state sequence of robot 𝛼 resulting from anext
𝛼 . We

first construct a virtual map using the historical data of robot
teams:

V∗ = arg max
V

𝑃(V|Xold,Zold). (6)

Here, Zold represents the observations associated with Xold.
Then we perform another maximum a posteriori estimation to
estimate Xnew:

Xnew∗ = arg max
Xnew

𝑃(Xnew |V∗,Znew), (7)

Znew = Zold ∪Zpredict. (8)

The updated observation set, Znew, is a combination of
both previously gathered observations, Zold, and anticipated
future observations,Zpredict. These predicted observations are
determined via the measurement models outlined in Eq. (1),

Eq. (2), and Eq. (3), based on the virtual map V∗ and the
target state assigned to each robot. Thus, we assess the overall
local map uncertainty of robot 𝛼 by computing the sum of the
individual uncertainties for each map element in the virtual
mapV(·) derived from Eq. (6) considering only the optimized
states of robot 𝛼, Xnew

𝛼
∗:

𝑈𝑀 = 𝜙(ΣV(Xnew
𝛼
∗ ,Znew ) ) (9)

=
∑︁

vi∈ (Xnew
𝛼
∗ ,Znew )

𝜙(Σv𝑖 ). (10)

Each element v𝑖 contributes to the sum based on its covariance
Σ𝑣𝑖 , and in this paper, we employ the D-Optimality metric as
our uncertainty criterion 𝜙.

To optimize the distribution of exploration tasks among
the robots, we utilize a distance evaluation metric inspired
by the methodology presented in [3]. For each potential new
target state a𝑡𝛼

′ assigned to robot 𝛼 at time 𝑡, we quantify the
effectiveness of task allocation using 𝑈𝑇 :

𝑈𝑇 =
∑︁

a𝑖
𝛽
∈A,𝛽≠𝛼

ℎ(∥a𝑡𝛼
′
− a𝑖𝛽 ∥2), (11)

ℎ(𝑑) =
{

1 − 𝑑
𝑑max

𝑑 < 𝑑max

0 𝑑 ≥ 𝑑max
. (12)

Here, ∥·∥2 represents the L2 norm, and A denotes the
collection of all historical target states for all robots. Based
on this, we can define the new target state for robot 𝛼 as one
of the potential target states that optimally balances the factors
𝑈𝑀 , 𝑈𝑇 and the Euclidean distance to target state factor, 𝑈𝐷 ,
with scale factors 𝜆0, 𝜆1, 𝜆2:

anext
𝛼 = arg min

a𝑡𝛼
′
(𝜆0𝑈𝑀 + 𝜆1𝑈𝑇 + 𝜆2𝑈𝐷). (13)

III. Algorithm and Results
In this section, we discuss the details of the proposed

expectation-maximization algorithm. We consider a situation
where a group of robots collaborates, and each individual robot
within the group is furnished with both motion and perception
sensors. A factor-graph based SLAM algorithm is operating at
a specific frequency, concurrently generating a virtual map for
each robot based on the trajectory from its SLAM solution.
The robot team shares their optimized SLAM trajectories,
landmark positions and history of chosen target states among
its members. However, individual robots maintain virtual maps
locally using the latest SLAM estimates.

After a robot 𝛼 successfully reaches its current target state,
its virtual map is updated and a group of potential new
target states is chosen from the virtual map. Subsequently,
the virtual observation is synthesized utilizing the prevailing
environmental knowledge. Next, the graph-based uncertainty
propagation computes the potential impact of the target state
under consideration, leading to an update in the virtual map’s
covariances. The new target goal is then selected according to
the utility function (Eq. (13)). Finally, the motion planner is
initiated to formulate a series of actions leading robot 𝛼 to the
new target state.



(a) An example of choosing an
exploring frontier (purple) due to
the current map uncertainty being
relatively low.

(b) An example of choosing an
revisiting frontier (orange) driven
by the significant uncertainty in the
map.

Fig. 1: In the 100𝑚 × 100𝑚 virtual map created by the robot
team, gray ellipses depict the uncertainty of each cell. The current
robot position is denoted by a black star, and the newly selected
target state is represented by a red star. Landmarks are expressed
by black crosses. Potential frontiers emerge along the boundary
between the explored and unexplored areas. The three types of
frontiers—exploring, revisiting, and rendezvous—are differentiated
by their respective colors: purple, orange, and yellow.

A. Virtual Map
As depicted in Eq. (6), the virtual map V of a finite

environment is generated from the robot states X and their
associated observations Z. Assuming that V comprises 𝑏

map cells v𝑖 referred to as virtual landmarks, the posterior can
be redefined as follows:

𝑃(V|X,Z) =
∏

v𝑖∈V
𝑃(v𝑖 |X,Z). (14)

The likelihood of virtual landmark v𝑖 being observed is 𝑞(v𝑖) =
E[𝑃(v𝑖 |X,Z)]. When this virtual landmark is observed by
multiple robot states, the procedure for updating 𝑞(v𝑖) is the
same as updating map cell values in an occupancy grid map
[13]. We assume the virtual landmark v𝑖 is observed by a
robot state x𝛼, 𝑗 , with its estimated value denoted as x̂𝛼, 𝑗 ,
and a marginal covariance of Σx𝛼, 𝑗

. We can compute the
covariance: Σv𝑖 = H · Σx𝛼, 𝑗 · H⊺. Here, H =

𝜕𝑔 (x𝛼, 𝑗 ,v𝑖 )
𝜕x𝛼, 𝑗

|x̂𝛼, 𝑗

represents the Jacobian matrix obtained by differentiating
the landmark observation model 𝑔(x𝛼, 𝑗 , v𝑖) with respect to
estimated robot state x̂𝛼, 𝑗 . We utilize Covariance Intersection
to compute the covariance of a virtual landmark that is
observed by multiple robot states, as detailed in [12]. Fig.
1 shows inter-robot virtual maps built from both local robot
states and neighbors’ robot states received by local robot 𝛼.
The observed regions are highlighted in white; gray ellipses
show covariances describing the uncertainty of the map’s cells.

B. Uncertainty Propagation
As depicted in Fig. 1, most potential target states are

chosen from the perimeters of the observed regions. Three
types of frontiers are identified for selection: exploration
frontiers close to the robot’s latest position, revisiting frontiers
near previously visited landmarks, and rendezvous frontiers,
which are the current target positions of neighboring robots.
Subsequently, for each potential target, a set of waypoints
Xnew is uniformly sampled along the shortest path connecting

Fig. 2: Graph-based uncertainty propagation with virtual observa-
tions. Nodes representing the current robot states are distinguished
by red edges. For every potential next target state (shown in pink),
a trajectory simulation is executed, leading to the generation of
a sequence of virtual observations indicated by dashed arrows.
Simultaneously, we model the future states and observations of other
robots as they approach their individual current target states.

Algorithm 1: Uncertainty Propagation
Global: Latest SLAM Graph G and Inter-robot Virtual
MapV∗

Input: Potential frontier state a𝑡𝛼
′, Current robot states

X𝑡 , Current Target States of Neighbors A𝑡

Output: Optimized robot states Xnew∗

Xpredict ← ∅
foreach a𝑡𝛾 ∈ A𝑡 , x𝑡𝛾 ∈ X𝑡 do
X𝑡:∗
𝛾 ← GenerateVirtualWaypoints(a𝑡𝛾 , x𝑡𝛾)
Xpredict ← X𝑡

𝛾 ∪ Xpredict

end
Xnext ← GenerateVirtualWaypoints(a𝑡𝛼

′
, x𝑡𝛾)

# Calculate virtual observations
Zpredict ← VirtualObserve (V∗,Xpredict ∪ Xnext)
# Graph optimization
UpdateGraph (G,Xpredict ∪ Xnext)
Xnew∗← OptimizeGraph(G)
return Xnew∗

the robot’s current state and the next potential target state.
Additionally, waypoints Xpredict are generated to connect the
present states of neighboring robots with their respective
target states. This augmentation enhances the simulation of
future steps. The process of generating virtual observations
Zpredict along these waypoints is depicted in Fig. 2. Virtual
odometry measurements are created between adjacent way-
points using Eq. (1). For virtual landmark observations, Eq.
(2) is employed, generating observations between previously
observed landmarks and nearby waypoints. When two robots
are within each other’s sensing range at the same timestep, a
virtual robot observation is produced using Eq. (3). Following
this, virtual observations are added into the SLAM graph to
propagate uncertainty. The step-by-step procedure is outlined
comprehensively in Algorithm 1.



Algorithm 2: Calculate 𝑈𝑀 of potential frontier a𝑡𝛼
′

Input: Inter-robot Virtual MapV∗, Local Virtual
MapVnew

𝛼
∗

Output: Map uncertainty utility factor 𝑈𝑀

𝑈𝑀 ← 0
for 𝑖 ← 0 to 𝑏 do

v𝑖,𝑔 ∈ V∗, v𝑖,𝑙 ∈ Vnew
𝛼
∗

# 𝑞min: minimum accepted probability of observed.
if 𝑞(v𝑖,𝑙) > 𝑞min and 𝑞(v𝑖,𝑔) > 𝑞min then

𝑈𝑀 ← 𝑈𝑀 + |Σv𝑖,𝑙 |
end

end
return 𝑈𝑀

C. Map Uncertainty Utility Factor
We compute the uncertainty of map cells by considering

both the likelihood of the existing virtual map V∗ and the
optimized robot states of robot 𝛼,Xnew

𝛼
∗ ⊂ Xnew∗. Referencing

Fig. 3(f), it is evident that despite the pink robot’s trajectory
being impacted by localization uncertainty due to accumulated
odometry error, this uncertainty is partially mitigated by
the historical trajectory of the green robot, which exhibits
relatively lower uncertainty. The construction of a inter-robot
virtual map for map uncertainty estimation could potentially
lead to conflicts in decision-making for a local robot. As
outlined in Alg. 2, we generate a local virtual map denoted
as Vnew

𝛼
∗ for robot 𝛼. This map is constructed using Xnew

𝛼
∗

and corresponding observations Znew
𝛼 . Then, we compute the

uncertainty utility of the map by considering the overlapping
observed segment between the current inter-robot virtual map
V∗ and the predicted local virtual mapVnew

𝛼
∗ with Eq. (9).

D. Experiments and Results
We perform experiments within a 200m × 200m en-

vironment, employing randomly generated landmarks. The
errors described below define 95% confidence intervals. We
assume each robot is furnished with a sonar with range
error 0.1m, bearing error 0.1°, and max. sensing range 10m.
Each robot also performs inertial dead reckoning; its gyro
and accelerometer yield errors of 5° and 0.05m. To navigate
towards uncharted territories, we utilize the Artificial Potential
Field (APF) method, detailed in [14], to avoid collision. The
result of an environment exploration involving five robots is
depicted in Fig. 3. References
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