
DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS ROBOT

EXPLORATION UNDER UNCERTAINTY

by

Fanfei Chen

A DISSERTATION

Submitted to the Faculty of the Stevens Institute of Technology
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Fanfei Chen, Candidate

ADVISORY COMMITTEE

Brendan Englot, Chairman Date

Philippos Mordohai Date

Kishore Pochiraju Date

Long Wang Date

STEVENS INSTITUTE OF TECHNOLOGY
Castle Point on Hudson

Hoboken, NJ 07030
2021

©2021, Fanfei Chen. All rights reserved.

iii

DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS ROBOT

EXPLORATION UNDER UNCERTAINTY

ABSTRACT

Mapping and exploration of a priori unknown environments are crucial capa-

bilities for mobile robot autonomy. Information-theoretic exploration methods were

developed to guide robots to the unexplored areas of their environment that will con-

tribute the largest quantities of new information to an occupancy map. Meanwhile,

simultaneous localization and mapping (SLAM) provides a way to evaluate map accu-

racy and manage localization error under noisy relative measurements. Consequently,

SLAM-based exploration or active SLAM has been applied successfully for mapping

an unknown environment autonomously under robot landmark and pose uncertainty.

However, the decision-making component of active SLAM exploration methods is

time-consuming due to the need for forward simulation of future robot measurements,

and prediction of the resulting map and pose uncertainty. This approach will ulti-

mately fail for real-time decision-making with increasing dimensionality of the state

space and the action space, due to the costly time complexity of such methods.

In this proposed work, we present learning-based exploration algorithms to

offer reduced computation time and near-optimal exploration strategies under uncer-

tainty. First, we propose a method to solve autonomous mobile robot exploration

using a robot’s local map and deep reinforcement learning (DRL) without consid-

ering localization uncertainty. The DRL controller generates robot sensing actions

that are nearly as informative and efficient as those of a standard mutual information

maximizing controller, at a substantial reduction in computational effort during the

online testing phase. Second, we present an approach that uses graph neural net-

iv

works (GNNs) in conjunction with DRL by taking proposed exploration graphs as

input data, enabling decision-making over graphs containing exploration information

to predict a robot’s optimal sensing action in belief space. Third, we demonstrate

that the proposed GNN-based RL policy can be trained efficiently in a simulation

environment and perform zero- shot RL transfer to both virtual and real environ-

ments containing different obstacle quantities, arrangements, and geometries without

parameter-tuning. Fourth, we propose to learn an exploration policy from a portfolio

of algorithms that are well-suited to different situations, such that the learned policy

is capable of choosing an optimal exploration strategy according to the current state

of the environment.

Author: Fanfei Chen

Advisor: Brendan Englot

Date: August 20, 2021

Department: Mechanical Engineering

Degree: Doctor of Philosophy

v

To my family and my parents.

vi

Acknowledgments

First and foremost I would like to express my deepest appreciation to my advisor Dr.

Brendan Englot, for support and patience during my Ph.D. study in the Robust Field

Autonomy Lab (RFAL). Dr. Englot’s immense knowledge and plentiful experience

have encouraged me in all the time of my academic research and daily life. I am

especially grateful that he recognized my potential during my master’s studies and

recruited me. I appreciate the valuable time he spent on our weekly one-on-one

meetings to guide my research. Dr. Englot’s positive attitude and growth mindset

tremendously promote creativity and free discussion in our lab. Without his guidance

and support, this dissertation would not have been possible.

I would also like to show gratitude to my committee, Dr. Philippos Mordohai,

Dr. Kishore Pochiraju, and Dr. Long Wang for their encouragement, insightful

comments, and detailed feedback.

My sincere thanks also goes to my fellow labmates: Dr. Shi Bai, Dr. Tixiao

Shan, Dr. Jinkun Wang, Kevin Doherty, Dr. John Martin, Erik Pearson, Dr. Dengwei

Gao, Sumukh Patil, Dong Cui, Jake McConnell, Yewei Huang, and Paul Szenher. I

have received many helpful suggestions from discussion with you and I will remember

the cherished time spent together in the lab. I want to thank Dr. Mishah Salman

for all the advice for my research, and it has been a great pleasure to be his teaching

assistant. I want to thank Jennifer Field for her help with my TA duty. I want to

thank Chenhui Zhao for being a good friend and lunch buddy at Stevens.

Finally, I would like to express my gratitude to my parents for their emotional

and financial support. My research work couldn’t be done without their support. I

want to thank my wife Wenqian Zhang for her enduring support of me during my

doctoral work and bringing our beautiful daughter Thea to the world.

vii

Funding Acknowledgement: This thesis was supported in part by the National

Science Foundation (NSF), grant number IIS-1723996.

viii

Table of Contents

Abstract iii

Dedication v

Acknowledgments vi

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Overview and Contributions 2

2 Background 3

2.1 Simultaneous Localization and Mapping (SLAM) 3

2.1.1 Graph-based SLAM 3

2.1.2 Active SLAM 4

2.2 Deep Reinforcement Learning 5

2.2.1 Deep Learning 5

2.2.2 Reinforcement Learning 6

2.3 Autonomous Exploration 7

2.3.1 Classical Exploration 7

2.3.2 Learning-based Exploration 8

3 Learning-based Exploration without Uncertainty 9

3.1 Related Work 9

3.2 Problem Definition 10

3.2.1 Entropy and Mutual Information 11

ix

3.3 Deep Reinforcement Learning 12

3.3.1 State Space and Action Space 12

3.3.2 Reward Design 13

3.3.3 Value Function 14

3.3.4 Reinforcement Learning Framework 14

3.3.5 Neural Networks 16

3.3.6 Training Strategies: Bayesian 16

3.4 Experiments and Results 16

3.4.1 Experimental Setup 16

3.4.2 Testing in a 2D environment 18

3.4.3 3D exploration 21

3.5 Conclusions 24

4 Learning-based Exploration under Uncertainty 25

4.1 Related Work 25

4.2 Problem Formulation and Approach 27

4.2.1 Simultaneous Localization and Mapping Framework 27

4.2.2 Exploration Graph 28

4.3 Supervised Learning 29

4.4 Deep Reinforcement Learning 31

4.4.1 Reward Function 34

4.4.2 Exploration Training with RL 35

4.5 Experiments and Results 35

4.5.1 Experimental Setup 36

4.5.2 Policy Training 37

4.5.3 Computation Time 38

x

4.5.4 Exploration Comparison 39

4.5.5 Scalability 42

4.6 Conclusions 43

5 Zero-Shot Reinforcement Learning for Autonomous Exploration 44

5.1 Problem Formulation 44

5.1.1 Simultaneous Localization and Mapping Framework 44

5.1.2 Exploration Graph for Real Environments 46

5.2 Algorithms and System Architecture 47

5.2.1 Graph Neural Networks 47

5.2.2 Deep Reinforcement Learning 48

5.2.3 Reward Function 49

5.2.4 Computational Complexity 50

5.3 Experiments and Results 51

5.3.1 Experimental Setup 51

5.3.2 Policy Training 52

5.3.3 Simulated Exploration Comparison 53

5.3.4 Real-world Exploration 57

5.4 Learning Exploration from A Portfolio of Algorithms 58

5.4.1 Reward Function 59

5.4.2 Policy Training 59

5.4.3 Exploration Performance 59

5.5 Conclusions 61

6 Conclusions and Future Work 63

6.1 Conclusions 63

6.2 Future Work 64

xi

6.2.1 Reinforcement Learning for Learning from a Portfolio of Algo-

rithms 64

6.2.2 SLAM Graph Optimization by Learning Methods 64

Bibliography 64

1

Chapter 1

Introduction

1.1 Motivation and Problem Statement

It is challenging to solve an autonomous mobile robot exploration problem in an a

priori unknown environment when localization uncertainty is a factor, which may

compromise the accuracy of the resulting map. Due to our limited ability to plan

ahead in an unknown environment, a key approach to solving the problem is often

to estimate and select the immediate next best viewpoint. The next-view candi-

dates may be generated by enumerating frontier locations or using sampling-based

methods to plan beyond frontiers. A utility function may be used to evaluate the

next-view candidates and select the optimal candidate. It is common to forward-

simulate the actions and measurements of each candidate and choose the best one as

the next-view position. However, the decision-making component of active SLAM ex-

ploration methods is time-consuming due to the need for forward simulation of future

robot measurements, and prediction of the resulting map and pose uncertainty. This

approach will ultimately fail for real-time decision-making with increasing dimension-

ality of the state space and the action space, due to the costly time complexity of

such methods.

Learning-based exploration algorithms can accurately predict optimal next-

view positions with nearly constant computation time by taking camera image or

occupancy grid map as input data. However, an occupancy grid map has limitations

as an input to represent the environment. For example, in some instances neural

networks may be unable to perform reliably over a map with a rotation relative to

2

the maps presented in training. Hence, such a framework may take a longer time to

converge during the training phase, or even fail to converge, due to the size of the

state space induced by an occupancy map.

The goal of this dissertation is to design a learning-based exploration algorithm

which can efficiently and robustly achieve sim2sim and sim2real transfer. We aim

to transfer a learned exploration policy from the training environment to the test

environment without parameter-tuning.

1.2 Overview and Contributions

This dissertation is organized as follows. In Chapter 2, we review the methodologies

that are proposed for achieving autonomous exploration. These methodologies cover

exploration, SLAM and Expectation-Maximization Exploration.

In subsequent chapters, the main contributions of this dissertation are dis-

cussed as follows:

• A novel method to solve autonomous mobile robot exploration using a robot’s

local map and deep reinforcement learning (DRL) without considering localiza-

tion uncertainty [1] (Chapter 3);

• A novel approach that uses graph neural networks (GNNs) by taking proposed

exploration graphs as input data, enabling decision-making over graphs con-

taining exploration information to predict a robot’s optimal sensing action in

belief space [2], [3] (Chapter 4);

• A novel zero-shot RL transfer framework that can learn exploration policies

efficiently in a simulation environment and perform policy transfer to both

virtual and real environments without parameter-tuning [4] (Chapter 5).

3

Chapter 2

Background

2.1 Simultaneous Localization and Mapping (SLAM)

2.1.1 Graph-based SLAM

A graph-based SLAM framework [5], [6] solves the estimation problem by performing

incremental nonlinear least-squares smoothing over a factor graph that represents the

current state. A factor graph is a bipartite graph containing factor nodes and variable

nodes. The variable nodes are unknown variables in the estimation problem. The

factor nodes are functions of related variables. Edges in the factor graph indicate

the dependencies of the factor node and the corresponding variable node so they are

always between factors and variables.

We consider the trajectory by a set of variables x1:T = {x1, x2, ..., xT}. The

control input variables are denoted as u1:T = {u1, u2, ..., uT} and the measurements

are represented as z1:T = {z1, z2, ..., zT}. The goal of the SLAM problem is to solve

for the posterior probability:

p(x1:T ,m|z1:T ,u1:T , x0), (2.1)

where m is the map and x0 is an initial position. We also define virtual observation

measurements ẑ(xi, xj), which represent an observation of a transformation from po-

sition xi to position xj. The measurement error between the real observation and the

virtual observation is defined as:

eij(xi, xj) = zij − ẑij(xi, xj). (2.2)

4

The log-likelihood lij of the observation difference associated with the mea-

surement zij is:

lij ∝ eTijΩijeij, (2.3)

where Ωij is the information matrix of the measurement between positions i and j.

We wish to recover the estimated trajectory that minimizes the measurement error

as follows:

x∗ = arg min
x

∑
i,j

eTijΩijeij. (2.4)

This nonlinear least-squares problem can be solved by various optimization methods.

The optimization step can be achieved in real-time because of the sparsity of the

information matrix [7].

2.1.2 Active SLAM

Active SLAM exploration approaches have been developed to reduce both the uncer-

tainty of a robot’s pose and entropy of the map by considering the correlation between

localization and information gain [8]. A typical active SLAM algorithm gradually pop-

ulates an incomplete stochastic map of the environment. At each decision-making

step, i candidate trajectories are evaluated with respect to a cost function containing

an uncertainty criterion [9]. The underlying SLAM algorithm is used to predict the

posterior map resulting from each candidate trajectory, and each is evaluated using

the cost function J . The cost function J is defined as:

J =
∑
i

αiUi +
∑
i

βiTi, (2.5)

where U indicates the cost of the uncertainty, T represents the cost of the travel-to-

goal, and α and β are weight parameters for these respective costs. The goal of active

5

SLAM is to select the policy that optimizes J .

The approach proposed in [10] uses the particle filter to reduce the overall

uncertainty for both maps and poses by capturing a trajectory’s uncertainty using

the particle weight. The Expectation-Maximization (EM) Exploration algorithm [11],

[12] introduces virtual landmarks to represent the uncertainty of unexplored regions,

and a novel utility function for solving the exploration problem that seeks the most

accurate map possible with every sensing action.

2.2 Deep Reinforcement Learning

2.2.1 Deep Learning

Deep Learning [13] has achieved great success in many domains such as Computer

Vision (CV), Natural Language Processing (NLP), and robotics. Convolutional Neu-

ral Networks (CNNs) [14], [15] are designed to analyze array-like data such as 2D

images and 3D videos. The convolutional layer in CNNs is used for extracting local

conjunctions of features from the previous output. The pooling layer is for combin-

ing semantically similar features. Recurrent Neural Networks (RNNs) are capable of

processing sequential input data by memorizing the elements of the sequence in the

hidden units. Typically, the long short-term memory (LSTM) architecture [16], [17]

solves the vanishing gradient problem [18] in the traditional RNN model, because the

cell and the gates in the LSTM model regulate the history information.

Analyzing graphs with deep learning is a fast-growing research area. Graph

Neural Networks (GNNs) [19] use neural network models to process data in the graph

domain. GNNs use the message passing function to capture the relationship between

nodes in graphs and update the node or edge information during the data process-

ing step. Graph Convolutional Networks (GCNs) [20] have a similar convolutional

6

mechanism as CNNs. Gate Recurrent Units (GRU) are proposed in the Gated Graph

Neural Network (GGNN) [21] to unroll the recurrence steps and compute gradients

by backpropagation through time. Graph Attention Networks (GAT) [22] adopt the

attention mechanism for capturing important subsets of graphs.

2.2.2 Reinforcement Learning

Reinforcement Learning (RL) is capable of solving sequential decision-making prob-

lems by training an agent to predict the optimal action from the rewards collected in

the environment. A Markov decision process (MDP) is the standard model used for

reinforcement learning. The policy π guides the robot to choose an action correspond-

ing to the current state. The policy expects to achieve the maximum discounted sum

of future rewards Rt.

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k+1, (2.6)

Value-based methods [23], [24], [25] aim to maximize the expected sum of the rewards.

The value function of a state-action pair is:

Qπ(s, a) = Eπ{Rt|st = s, at = a}. (2.7)

Policy-based methods [26], [27], [28], [29] optimize the policy directly through gradient

algorithms during the training process. The most common policy gradient form is:

∇θJ(θ) = Eπ[Qπ(s, a)∇θ lnπθ(a|s)]. (2.8)

7

2.3 Autonomous Exploration

2.3.1 Classical Exploration

Frontier-based exploration methods use the frontiers [30] which are boundaries be-

tween free and unknown areas. By taking a next-view point from frontiers in each

decision-making time, the robot is guaranteed to explore the whole unknown environ-

ment eventually. However, the frontier-based exploration methods are not efficient in

a 3D environment.

Information-theoretic exploration methods guide a robot to explore the un-

known environment by repeatedly selecting the sensing action expected to be most

informative [31], [32], [33]. Shannon’s entropy [34] is typically employed as the infor-

mation metric to describe the completeness of our knowledge about the contents of

an occupancy grid map [35] m as follows:

H(m) = −
∑
i

∑
j

p(mi,j) log p(mi,j). (2.9)

In Eq. (2.9), index i represents the individual grid cells of the map, and

the possible outcomes of the Bernoulli random variable describing each map cell are

referred to as index j. The Mutual Information (MI) I(m, ai) is used to evaluate the

expected information gain with respect to the action at:

I(m, ai) = H(m)−H(m|at), (2.10)

An information-theoretic exploration method seeks to find an optimal sensing

action at each decision-making step to obtain the maximum mutual information over

an occupancy grid map. A fully explored environment can be achieved eventually,

8

which provides the minimum map entropy.

It has also proven effective to use Gaussian process frontier maps as a predictive

tool to support exploration [36], [37]. However, these methods do not consider a

robot’s localization uncertainty during the exploration process, which eventually leads

to an inaccurate map.

2.3.2 Learning-based Exploration

Learning-based exploration methods can offer reduced computation time and near-

optimal exploration strategies. Bai et al. proposed a Gaussian process based mutual

information prediction method [38], and a subsequent Bayesian optimization active

sampling approach [39], to speed up the prediction of mutual information throughout

a robot’s action space. Supervised learning approaches have used labeled data col-

lected from high-performance exploration methods to train neural networks to predict

optimal exploration actions. Specifically, [40] shows that deep supervised learning can

produce high-quality solutions for the exploration problem by using local occupancy

maps as input data. Moreover, an exploration policy can be trained via reinforcement

learning methods using representative example environments and a proper reward de-

sign. [1] and [41] demonstrate that a mobile robot can take occupancy grid maps as

input data to predict the best exploratory action using reinforcement learning ap-

proaches. However, an occupancy grid map has limitations as an input to represent

the environment. For example, in some instances, neural networks may be unable

to perform reliably over a map with a rotation relative to the maps presented in

training. Hence, such a framework may take a longer time to converge during the

training phase, or even fail to converge, due to the size of the state space induced by

an occupancy map.

9

Chapter 3

Learning-based Exploration without Uncertainty

This chapter will examine the potential of deep reinforcement learning (DRL) to

match the performance of information-theoretic exploration. Combining DRL with

local occupancy grid maps, a mobile robot can learn how to explore maze-like envi-

ronments via the reward provided by the information gain.

3.1 Related Work

Model-based methods in RL often accelerate the training process [42], since the agent

can obtain training information from a model in addition to the rewards from the

environment. A pre-trained policy can also improve the performance of learning and

increase a robot’s learning efficiency [43]. Jaderberg proposed an auxiliary approach

to explore the potentially reward-rich areas of an environment, avoiding low-reward

areas [44]. Such methods require a priori knowledge of either the environments or

the policy model.

Tai introduced a deep learning [45] and a deep reinforcement learning [46]

based obstacle avoidance policy that is trained and tested using sensor data from the

same environment. The learned obstacle avoidance policy can only be used in the

same environment in which it is trained, and is ineffective for use across heteroge-

neous environments. Deep Recurrent Q-Networks (DRQN) were developed in [47]

to play First-Person-Shooting (FPS) games in a 3D environment. By combining an

RNN with a DQN, the DRQN can generate appropriate outputs that depend on the

temporally consecutive inputs. Meanwhile, a target-driven robot visual navigation

policy was also trained using deep reinforcement learning [48]. The robot was trained

10

Figure 3.1: An illustration of our framework. In the training phase, we expose the
robot to different environments and the policy optimizes parameters in the neural
network by informative reward rt, where the current state is a local map st and the
corresponding robot action is at. Training concludes after 2 million episodes. Then
in the testing phase, we provide a different set of diverse environments. The policy is
used to estimate the optimal action, which is indicated by the red point a′t from the
current robot’s local map s′t.

in a simulated environment and implemented its policy successfully in a physical en-

vironment. However, this method requires a sophisticated simulation environment

and it is challenging to predict the information gain of many potential future sensing

actions using a single camera view. Choudhury et al. proposed the ExpLOre algo-

rithm [49] to gather information using imitation learning. This algorithm provides

non-myopic solutions for the autonomous exploration problem, however, the policy

is trained and tested over the same maps, with different view nodes. Other works

involving reinforcement learning and robot navigation in [50] and [51] have dealt with

learning the topology of an environment as well as motion planning, however our

work focuses purely on the efficiency of mapping in the absence of a prior map.

3.2 Problem Definition

Instead of choosing the sensing action of maximum expected information gain after a

computationally expensive evaluation of all the candidate sensing actions, we employ

11

a neural network to predict the optimal sensing action and train it using reinforce-

ment learning. We use a database of maps with similar characteristics, however with

different individual topologies and layouts. A flowchart demonstrating both the train-

ing and testing phases is shown in Figure 3.1. We train and test the neural network

on locally visible portions of randomly-generated 2D maps of indoor environments.

We consider these locally visible, uniformly-sized regions instead of the entirety of a

robot’s currently acquired map with the aim of achieving a scalable, computationally

efficient approach that may be applied to environments of arbitrary size. However,

this is done with the understanding that we are training an information-seeking con-

troller rather than a global optimization method.

3.2.1 Entropy and Mutual Information

We use Shannon’s entropy as the metric to represent the completeness of our knowl-

edge about the map, which is described in the following equation:

H(m) = −
∑
i

∑
j

p(mi,j) log p(mi,j). (3.1)

In Eq. (3.1), m represents the current occupancy grid map, where index i refers

to the individual grid cells of the map and index j refers to the possible outcomes

of the Bernoulli random variable that represents each grid cell, which is either free

or occupied. Cells whose contents have never been observed are characterized as

p(mi,j) = 0.5, contributing one unit of entropy per cell. Cells whose contents are

perfectly known contribute no entropy to the summation.

We define Mutual Information (MI) I(m, ai) to be the expected information

12

(a) (b)

Figure 3.2: Left: A local map is extracted from the global map and is used to represent
the state space. The gray point in the free space indicates the location of the robot
itself. Right: An illustration of the same robot’s action space.

gain with respect to the action at:

I(m, ai) = H(m)−H(m|at), (3.2)

where H(m) is the entropy of the current map, and H(m|at) is the expected entropy

after collecting a sensor observation upon executing the action at.

3.3 Deep Reinforcement Learning

3.3.1 State Space and Action Space

We initially adopted the robot’s entire global map as the state space Sglobal, however

it was challenging to achieve efficient convergence for such a large state space, and

map size may vary widely from one application to the next. Thus, we instead choose

a local region of the map, centered at the robot’s current location, as our state space

S as shown in Figure 3.2(a). We define the action space A as a set of quasi-random

samples drawn within a constant radius of the robot, shown in Figure 3.2(b) (here

we use the Sobol sequence).

13

Figure 3.3: An illustration of our convolutional neural network, in which the blue
cubes represent each data structure. The original input data is a single-frame
grayscale image. The output of the network is a one-dimensional vector, where each
entry is the reward associated with one specific action.

3.3.2 Reward Design

Mnih et al. [24] has suggested normalizing the reward so that r ∈ [−1, 1]. We choose

70 percent of the maximum possible mutual information from Eq. 3.2 as the upper

bound for the reward (which is rarely exceeded in practice). We also normalize the

MI acquired by an action at using 70 percent of the maximum possible MI, if the

MI obtained is greater than zero. When an action leads to collision with an obstacle

or zero information gain, we assign r = −1 and r = −0.8 repectively. The reason

for assigning negative reward to actions with zero information gain is to discourage

driving to previously observed areas of the map.

14

3.3.3 Value Function

The function V π is the state-value function for policy π:

V π(s) = Eπ{Rt|st = s}. (3.3)

In (3.3), Eπ indicates the expected discounted future reward R provided by the policy

π in terms of the current state at time-step t. Furthermore, the function Qπ is the

state-action value function for policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a}. (3.4)

In (3.4), at time-step t, not only the state but also the action are utilized to gener-

ate the expected discounted future reward R provided by the policy π. Both value

functions V π and Qπ are used to evaluate the current state and action. Using these

value functions, the agent can identify whether the current state and action yield a

high reward. Specifically, the larger number shows the better circumstance.

3.3.4 Reinforcement Learning Framework

The typical setting for reinforcement learning (RL) [52] is a partially observable

Markov decision process (POMDP). The agent chooses an action guided by policy π

based on current state S, and expects to maximize its discounted future reward R,

which is represented as follows:

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k+1, (3.5)

15

where γ ∈ [0, 1] denotes the discount rate. By setting a higher value for γ, it will

encourage the model to pay more attention to future rewards. In contrast, the model’s

training will be more focused on the current action if γ decreases.

We use a Deep Reinforcement Learning (DRL) model and define the transition

tuple as < s, a, r, s′ >, where s denotes a robot’s current state, a denotes its action,

r denotes the reward and s′ denotes the next state, achieved by the transition. The

Bellman optimality equation for Qπ(s, a) is:

Q∗(s, a) = E{rt + γmax
a′∈A

Q∗(st+1, a
′)|st = s, at = a}

= Pass′ [Ra
ss′ + γmax

a′∈A
Q∗(s′, a′)]

= r + γmax
a′∈A

Q∗(s′, a′),

(3.6)

where Pss′ are the transition probabilities and Ra
ss′ is the expected reward for the

current transition. In our model, the transition probabiliy from st to st+1 is 1, and

thus s′ = st+1 and Pass′ = 1. The policy is defined as follows:

π(s) = arg max
a∈A

Q(s, a), (3.7)

and the loss function is defined as follows:

L =
1

2
[r + γmax

a′∈A
Q∗(s′, a′)−Q∗(s, a)]2. (3.8)

The loss of the action-value function is the squared difference of the policy-

provided value and the Bellman optimality equation-provided value. We want to

minimize the loss through training, so that the policy π can select a near-optimal

action even if it misses the optimal one. We use the Adam first-order gradient-based

16

algorithm [53] when optimizing the parameters of the DRL model.

3.3.5 Neural Networks

We integrated two different neural networks in our framework, including the convo-

lutional neural network (CNN) used for Q-learning in [24], as shown in Fig. 3.3, and

a Long Short Term Memory network (LSTM) [54], which is a state-of-the-art struc-

ture for RNNs. The output is influenced by the temporal sequential inputs to the

RNN model, offering the prospects of decision making that considers the temporal

context of an input state. Furthermore, we have added a dropout layer to both neural

networks to avoid overfitting.

3.3.6 Training Strategies: Bayesian

The work of [55] has proven that the output of the dropout [56] neural network layer

can represent the uncertainty of the actions. With probability p, the output of the

dropout layer is the input element scaled up by 1/p. For the networks with a dropout

layer, we first define p = 0.1 to choose the most uncertain action, and as the training

phase runs, p is increased gradually until p = 1, which means the robot always take

an action using the policy.

3.4 Experiments and Results

3.4.1 Experimental Setup

We first trained a policy over a 2D maze-like environment, using 5663 maps during the

training phase. The simulated robot in our experiment is provided a 360-degree field

of view noise-free range sensor. Its occupancy grid map is handled deterministically,

where p = 1 for occupied cells, p = 0 for free cells and p = 0.5 for unknown cells.

17

0 1 2 3 4 5 6 7 8

Training epochs 10 5

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
v
e
ra

g
e
 r

e
w

a
rd

Performance of different neural network

CNN dropout 0.2

CNN without dropout

RNN dropout 0.2

Figure 3.4: Convergence rate of neural networks during training. Both the CNN and
RNN benefit from having a dropout layer, which improved not only the convergence
rate but also the average reward.

Every map is 640m × 480m, while the sensor range and each robot step are 80m

and 40m, respectively. We use a 240m× 240m local submap captured at the robot’s

current location as the input state to the neural network. We translate the local map

to a grayscale image, where 255 indicates free space, 1 indicates occupied space, and

127 is unexplored space. Further, we denote the robot in the map as a circle with a

6m radius, and it is assigned a grayscale value of 76.

The robot checks for collisions before taking any action, and will include in-

stances of collision in its training. However, the robot will only proceed with exploring

after a collision-free action is selected. If the robot navigates into a dead end, this

will trigger a “frontier rescue (FR)” strategy, which drives the robot to the nearest

frontier [30] in its occupancy map, so that we may continue training with the current

map. We explored different neural networks for training, as described in Section 3.3.5.

The simulation environment is written in Python, with a C++ library for the

inverse sensor model, and our neural network model is trained using TensorFlow

[57]. However, the inverse sensor model cannot be processed in parallel because

18

50 actions 200 actions 1000 actions 2000 actions
20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

Information gain of controllers

MI RNN

in
fo

rm
at

io
n

ga
in

(a)

50 actions 200 actions 1000 actions 2000 actions
0.001

2

5
0.01

2

5
0.1

2

5
1
2

5
10

Computation time of each step

MI RNN

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

(b)

Figure 3.5: (a): A comparison of information gain achieved by the MI-maximizing
controller and the RNN approaches, over action spaces of different sizes. (b): The
average computation time for each decision making step, over action spaces of dif-
ferent sizes. Note that both plots show not only the mean and standard deviation
(wide bars), but also the minimum and maximum value of information gain and
computation time (narrow bars) among all trials.

the workload of each ray casting operation is too low compared with the associated

overhead. The training and testing maps are generated randomly by [58].

3.4.2 Testing in a 2D environment

We compared the learned RNN controller and an exhaustive MI-optimizing controller

on a testing-phase dataset comprised of 5218 maps. The MI controller, along the lines

of [33], explicitly evaluates the expected information gain of every possible sensing

action, by projecting the sensor’s rays throughout the map at each candidate configu-

ration, and choosing the sensing action that offers maximum expected MI. A frontier

based rescue mechanism will take place when there is zero information gain resulting

from any action. For both methods, the exploration of a map will be terminated

only after the entropy of a map has been reduced to zero. The testing of the mutual

information controller was performed using an Intel i7 3.5Ghz CPU, while the learned

RNN controller was run on an Nvidia GeForce GTX 1080 GPU.

The FR heuristic is introduced to lead the robot to the nearest frontier from

19

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Representative trajectories produced by the RNN controller (top) and
the exhaustive MI controller approach (bottom), over three example maps from our
testing phase dataset. The robot starts from the cyan-colored point and ends at the
magenta-colored point in each trial (at which point the map has been fully explored).
When the robot is stuck in a local mapped region, the frontier rescue method will
lead the robot to go to the nearest frontier point by using the A* path planning
algorithm, which is indicated by the red lines above. The blue lines are the trajectories
provided by the RNN controller and the MI controller. Subfigures (a) and (d) show an
RNN controller instance that outperforms the MI controller, (b) and (e) show similar
outcomes among the two methods, and (c) and (f) illustrate a lower-performing RNN
controller instance relative to the MI controller.

obstacle-induced or information-poor dead-ends, where the A* algorithm finds an

efficient path to the nearest frontier from the robot’s current location. We believe

employing an efficient planning algorithm such as A* is a reasonable approach for

navigating from known areas of the map back to the frontiers, as the focus of this study

is learning to select informative sensing actions in partially unknown environments,

rather than navigating known maps.

We select two metrics to show the relative performance of both methods. The

20

total information gain from controller-driven sensing actions is a key element to eval-

uating the performance of the methods, while the information gain acquired by FR

heuristic has been excluded. We assume the robot executes each sensing action at

the same, constant velocity, as it is straightforward that the computation time of

each decision making step is also a critical index to compare the efficiency of the two

controllers.

Fig. 3.4 demonstrates the outcomes of the training phase for the case of 50

actions, giving a comparison among all of the neural networks examined. In two

cases, we set a dropout layer with a rate of 0.2 in the penultimate layer of the neural

network. The dropout strategy improves the final converged average reward for both

the RNN and CNN. The CNN without a dropout layer offers the worst reward result

in the end. Meanwhile, the CNN with a 20 percent dropout layer achieves a higher

average reward. Although the RNN has a slower rate of convergence than the other

networks examined, because it needs to learn sequential map information, it provides

the best average reward in the end.

Fig. 3.5 gives results showing the performance of the exploration methods

over different-sized action spaces in the testing phase. We use box plots to describe

the distribution of the testing set of data. Each box plot represent 5218 data which

correspond to the number of testing maps. The x-axis of each plot indicates the size

of the action space examined. MI indicates a traditional exhaustive MI-maximizing

controller. The RNN approach indicates the learned RNN controller from the train-

ing phase. In Fig. 3.5(a), the y-axis indicates the total amount of information gain

obtained only by the controllers in each map. The RNN controller offers nearly the

same performance as the traditional MI approach across the different action spaces.

In Fig. 3.5(b), the log-scale y-axis indicates the computation time required for deci-

sion making at each step. The computation time of the exhaustive MI-maximizing

21

approach grows sharply as the action space grows. Meanwhile, the computation time

of the RNN method remains constant as the action space grows.

Fig. 3.6 shows a comparison of representative trajectories generated by the

MI-maximizing controller and our RNN controller over the same three maps. Figs.

3.6 (a), (b) and (c) are produced by the learned RNN controller, and (d), (e) and (f)

are generated by the MI-maximizing controller. Trajectory (a) offers a non-cyclical

trajectory which explores more efficiently than the outcome of (d). Trajectories (b)

and (e) show a similar result produced by the two respective methods. Trajectory

(c) has a worse exploration outcome because FR is implemented several more times

than in (f). However, in spite of the occasional need for frontier-guided paths, the

trajectory portions produced by the learned RNN controller are straightforward and

efficient.

Finally, a supplementary video offers three examples of how our RNN controller

performs in the testing phase, after different quantities of training epochs1. As the

learned policies converge over the course of two million epochs, each of the three

examples manages to explore its map in entirety with an exclusive reliance on the

RNN controller, without the need for the frontier rescue heuristic.

3.4.3 3D exploration

Furthermore, we validate the proposed approach in a 3D synthetic environment. Due

to the complexities of training over a much denser input, in this experiment we train

and test on the same map, but from different start locations. The testing of the

MI controller was performed using an Intel i7 4.2Ghz CPU, while the learned RNN

controller was run on an Nvidia Geforce Titan X Pascal GPU. We equipped the

robot with a simulated Velodyne VLP-16 3D LiDAR Sensor which provides a 360-

1https://youtu.be/2gNF6efv12s

https://youtu.be/2gNF6efv12s

22

Figure 3.7: A 3D synthetic environment (top view) used for both training and testing.

degree horizontal field of view and a 30-degree vertical field of view. Fig. 3.7 shows

the environment used for 3D exploration. The robot was initialized from random

locations in the map during training, and a selected set of locations when testing

(close to the corners of the map). Fig.3.8 shows an example sensing action selected

by the RNN controller. We use a similar RNN framework (which takes a more dense

input) and trained it from scratch. We use a 30m × 30m × 0.8m local occupancy

grid map with 0.2m resolution as the input state. We assigned a value 10 to indicate

occupied cells, 255 for free cells and 127 for unknown cells. The action space is a set

of 200 quasi-random points within a 5m radius in the horizontal plane. We apply the

same strategy when developing the reward function.

In Fig. 3.9, the information gain received only by the MI baseline approach

and the RNN approach, without the involvement of the FR heuristic, is shown for our

3D scenario. The robot will stop exploration if it maps 2500 m3 of the free volume of

the map (the total volume of the free space is 3200 m3). The y-axis of the plot shows

the average free volume mapped from four different starting points at the corners of

23

Figure 3.8: The RNN controller uses a local 3D occupancy grid submap as the input
data and estimates the best sensing action for the robot.

0 200 400 600 800 1000 1200
Time (seconds)

0

500

1000

1500

2000

2500

Fr
e
e
 v

o
lu

m
e
 (

m
3
)

Performance of MI and policy

MI controller
RNN controller

Figure 3.9: Comparison of information gain between the RNN and MI controllers
in a 3D synthetic environment (average of 6 trials). Note there is no frontier rescue
here, and the robot will explore until the mapped free volume reaches the designated
threshold, 2500 m3.

the map. The result shows that the RNN policy leads to a 100 percent increase in

efficiency in reaching the free-volume goal, compared with the MI method.

In addition to showing three examples of how our RNN controller performs

in the testing phase over 2D maps, the video attachment also shows the full 3D

exploration process for both the MI and RNN controllers. The robot stops when it

has mapped a designated fraction of the available free volume of the map (90 percent

of the total free volume). As depicted in Fig. 8, the timing of 3D exploration shown in

the video also includes the computation time associated with robot decision making

24

under each of the competing autonomous exploration frameworks.

3.5 Conclusions

We have proposed a novel approach to estimate the best mobile robot sensing action

in the course of exploring an unknown environment, trained via deep reinforcement

learning. In our framework, the DRL policy generates robot sensing actions that are

nearly as informative and efficient as those of a standard mutual information maxi-

mizing controller, at a substantial reduction in computational effort during the online

testing phase. The time complexity in the testing phase is O(1), which means that

our proposed method is scalable to higher-dimensional state-action spaces, as long

as the policy has been trained in a space of the same dimension. For the mutual in-

formation optimizing controller, with increasing dimension of the configuration space

and action space, the procedure’s computational complexity is no longer be real-time

viable. Looking ahead to future work, we also note that it is difficult to identify useful

and descriptive frontiers in a 3D map.

25

Chapter 4

Learning-based Exploration under Uncertainty

In this chapter, we will consider a learning-based approach to mobile robot exploration

of unknown environments that captures localization uncertainty. The robot learns

how to explore an unknown environment with the highest exploration efficiency as

well as the lowest map error. The proposed graph-based input data can capture

the topological structure and the key information of the current environment. The

learned policy can be used in a dynamic state-action space environment.

4.1 Related Work

Standard exploration algorithms use forward simulation to evaluate the mapping

outcomes and uncertainty of next-view candidates, and so their computational cost

increases substantially with an increasing number of next-view candidates. Learning-

based exploration methods offer the prospect of improved scalability for selecting the

next best view, with and without localization uncertainty. Learning-aided information-

theoretic approaches [38], [39] are proposed to reduce the cost of predicting MI. Deep

neural networks in [40], [1] and [41] can be trained to predict the optimal next-view

candidate through supervised learning and reinforcement learning, by taking occu-

pancy grid maps as input data. However, the state space of such maps is very large,

and a learned policy may fail when tested in a completely new environment.

Graphs can offer generalized topological representations of robot navigation,

permitting a much smaller state space than metric maps. GNNs incorporate graphs

into neural network models, permitting a variety of queries to be posed over them

[19]. Sanchez-Gonzalez et al. [59] proposed to use graph models of dynamical sys-

26

(a)

x1 x3

l6

x2

f2

l2

f6f1

l1

x9x8

f 7

…

(b)

Figure 4.1: Formulating and extracting the exploration graph. Left: the
grayscale color represents the probability of occupancy of a given map cell (assumed
to be 0.5 for unobserved cells). The ellipse in each cell represents the estimation
error covariance of each virtual landmark, with true landmarks shown in purple. Past
robot poses, the current pose, and candidate frontiers are indicated by gray circles, an
orange diamond, and blue circles respectively. Landmark nodes and the current pose
node are connected with their nearest frontiers. Right: An input exploration graph
is extracted from the current exploration state. Each edge in this graph is weighted
with the Euclidean distance between the two vertices connected.

tems to solve control problems with Graph Nets [60]. Exploration under localization

uncertainty is achieved in our prior work [2] through supervised learning over graphs,

which gives an unstable result because the number of nodes in each graph differs, and

the hyperparameters of the loss function are hard to tune. A novel graph localization

network is proposed in [61] to guide a robot through visual navigation tasks. Wang

et al. [62] introduces GNNs as policy networks and value networks, through their

integration into DRL, to solve control problems.

27

4.2 Problem Formulation and Approach

4.2.1 Simultaneous Localization and Mapping Framework

We adopt a graph-based approach in the SLAM framework supporting our robot’s

exploration. We then solve the SLAM problem as a least-squares smoothing problem.

The robot motion model and measurement models are defined as:

xi = hi(xi−1,ui) + wi, wi ∼ N (0, Qi), (4.1)

zk = gk(xik , ljk) + vk, vk ∼ N (0, Rk), (4.2)

where X = {xi}ti=1 are poses along the trajectory, L = {lj}mj=1 are m ∈ N landmarks,

and U = {ui}ti=1 is a given sequence of low-level actions. Then we solve the SLAM

problem as a least-squares problem:

X ∗,L∗ = arg min
X ,L

∑
i

∥∥xi − hi(xi−1,ui)
∥∥2
Qi

+
∑
k

∥∥zk − gk(xik , ljk)
∥∥2
Rk
.

(4.3)

X ∗ and L∗ are obtained using the GTSAM [63] implementation of iSAM2 [64] to per-

form nonlinear least-squares smoothing over a factor graph. The Gaussian marginal

distributions and Gaussian joint marginal distributions are produced from this graph-

based inference procedure.

We next introduce the virtual map of the EM algorithm for exploration under

localization uncertainty [11], which is a uniformly discretized grid map comprised of

virtual landmarks, l̃k ∈ L̃, to represent the uncertainty and occupancy probability of

every map cell. Each cell of the virtual map contains a virtual landmark with a large

initial covariance (illustrated in Figures 4.1(a) and 4.2(a)). We use A-optimality [65]

28

for our uncertainty criterion:

φA(Σ) = tr(Σ), (4.4)

where Σ is the error covariance matrix for all virtual landmarks in the map. Accord-

ingly, the uncertainty of the current state is quantified by the trace of the covariance

of all virtual landmarks. The definition of the utility function is as follows:

U(L̃) =
∑
l̃k∈L̃

φA(Σl̃k
). (4.5)

4.2.2 Exploration Graph

The definition of the exploration graph is G = (V , E), where V = X ∪ L ∪ F , and

where X ,L, and F are sets of previous poses, landmarks, and candidate frontier

nodes respectively. The edges E connecting pose to pose xi — xi+1, pose to landmark

xik — ljk , landmark to frontier ljk— fnk
, and the current pose to its nearest frontier

xt— fnt are weighted with the Euclidean distances between those nodes. Each node

ni ∈ V has a feature vector:

si = [si1 , si2 , si3 , si4 , si5],

si1 = φA(Σi), (4.6)

si2 =

√
(xi − xt)2 + (yi − yt)2, (4.7)

si3 = arctan2(yi − yt, xi − xt), (4.8)

si4 = p(mi = 1), (4.9)

si5 =


0 ni = xt

1 ni ∈ {fn}

−1 otherwise

. (4.10)

29

The contents of the feature vector are as follows. In Eq. (4.6), the A-Optimality

criterion, derived from our virtual map L̃, is used to quantify a node’s uncertainty.

Eqs. (4.7) and (4.8) provide relative pose information; the Euclidean distance and the

relative orientation between the current robot pose and each node in the exploration

graph. Occupancy information is extracted from an occupancy grid map, where mi

is the occupancy of the map cell associated with node ni in Eq. (4.9). Eq. (4.10)

provides an indicator variable, denoting the current pose to be 0, all frontiers to be

1, and all other nodes -1.

We note that frontier nodes are sampled from the boundary cells between free

and unexplored space in the occupancy map. The landmarks and the current robot

pose are the only nodes connected to frontiers, and each connects only to its nearest

frontier node. It is possible for multiple landmark nodes to be connected to the same

frontier node, but not for a landmark or pose node to connect to multiple frontier

nodes; only the nearest frontiers are connected into the graph. The composition of

an exploration graph is shown in Fig. 4.1.

4.3 Supervised Learning

Instead of explicitly computing the sensing action that maximizes the reward through

an expensive evaluation of all the candidate frontiers, we employ a GCN to predict

the optimal frontier with respect to the utility gain. However, we use the EM algo-

rithm to generate training data. For each decision-making step, actions A = {an}

are generated for each frontier node with straight-line path planning, and the EM

algorithm provides an action reward R = {rn} for all frontiers via forward simula-

tion. The reward R is normalized so that rn ∈ [0, 1]. We require that the reward

of an optimal frontier has to be larger than 0.95. If multiple frontiers are optimal

30

at the same time, we will select one at random. The rewards associated with pose

and landmark nodes are always 0 because we only select the robot’s next action from

among frontier nodes. Therefore, the training label ynodes is defined as follows:

yi =


1 ri > 0.95

0 otherwise

(4.11)

A multi-layer GCN is adopted to explore the environment. The layer-wise

propagation rule of the GCN [20] is as follows:

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)), (4.12)

with Â = A+I, where A is the adjacency matrix of the exploration graph G and D̂ is

the degree matrix of Â. H(l) represents the lth hidden layer of the GCN model with

the activation function σ(·). W (l) is the weight matrix of the lth layer.

For the GCN model, the definition of each hidden layer is as follows:

H(1) = σ1(D̂
− 1

2 ÂD̂−
1
2SW (1)), (4.13)

H(2) = Dropout(H(1)), (4.14)

H(3) = σ3(D̂
− 1

2 ÂD̂−
1
2H(2)W (3)). (4.15)

In Eq. (4.13), the size of weight matrix W (1) is 5×1000 because we want to upsample

the number of features from 5 to 1000. The activation function σ1 is a Rectified Linear

Unit (ReLU). We add a dropout layer with 0.5 dropout rate as shown in Eq. (4.14).

In the output layer, the size of the weight matrix W (3) in Eq. (4.15) is 1000× 1 and

the activation fuction σ3 is a sigmoid function.

31

The cross-entropy loss function is defined as follows:

L = −(w1y logŷ + w0(1− y) log(1− ŷ)), (4.16)

where w1 and w0 are the weights for class 1 and class 0. These weights are used

to balance the cost for imbalanced data. We empirically define w1 = 21 and w0 =

1. We use the Adam first-order gradient-based algorithm [53] when optimizing the

parameters of the GCN model.

4.4 Deep Reinforcement Learning

Reinforcement learning describes a sequential decision making problem, whereby an

agent learns to act optimally from rewards collected after taking actions. In our

setting, we consider changes to the exploration graph that result from our selection of

frontier nodes, which represent waypoints lying on the boundaries between mapped

and unmapped areas. At each step k ∈ N the environment state is captured by the

exploration graph Gk ∈ G 1. The robot chooses a frontier node to visit based on the

graph topology: fk ∈ FGk . This causes a transition to Gk+1 ∈ G and a scalar reward

R ∈ R to be emitted. The interaction is modeled as a Markov Decision Process

〈G,F,Pr, γ〉 [66], associated with the transition kernel Pr : G × F → P(G × R) that

defines a joint distribution over the reward and next exploration graph, given the

current graph and frontier node pair. Here, γ ∈ [0, 1) is a discount factor used to

control the relative importance of future rewards in the agent’s learning objective.

In this chapter we consider value-based methods and policy-based methods for

model-free control. Value methods strive to maximize the expected sum of future

1The exploration graph G encodes the full history of robot poses.

32

Algorithm 4.1: Reward Function

1 input: Exploration graph G, Frontier node f
2 # Normalize the raw reward Alg. 4.2
3 RG = {rf ′ = raw reward(G, f ′) ∀ f ′ ∈ AG}
4 l = minRG, u = maxRG
5 rf ← (rf − l)/(u− l)
6 # Compute projection based on nearest frontier
7 ft = nearest frontier(xt)
8 if u = raw reward(ft) then
9 return rf − 1 # r(G, f) ∈ [−1, 0]

10 return 2rf − 1 # r(G, f) ∈ [−1, 1]

Algorithm 4.2: Raw reward

1 input: Exploration graph G, Frontier node f
2 U ←path planner(G, f)
3 # Compute raw reward with (4.5), Alg 4.3 and cost-to-go

4 return U(L̃)− compute utilityL̃(U)− αC(U)

rewards, or the value:

Qθ(G, f) = E

 ∞∑
k=0

γkR(Gk, fk)
∣∣∣∣ G0 = G, f0 = f

 . (4.17)

For large-scale problems, the value function is represented with a parameterized func-

tion, such as a convolutional neural network or, in our study, a graph neural network.

To train Qθ, we gather transition samples of the form (G, f , r,G ′) using an ac-

tion sampling strategy that chooses the most uncertain action, which has the largest

value at the output. According to [55], the uncertainty of the actions can be repre-

sented by the output of the dropout layer. During training, we first dropout 90% of

our data before the MLP output model, and as the training phase runs, we gradually

decrease the dropout rate until it reaches 0%, which means the policy provides greedy

action selection.

33

Algorithm 4.3: Compute Utility

1 global: Virtual landmarks L̃
2 input: Sequence of low-level actions U
3 # Execute low-level actions with [11] L̃ ←update virtual map(U)
4 # Compute uncertainty estimate with (4.5)

5 return U(L̃)

The parameters θ are adjusted using stochastic gradient descent to minimize

the loss function L : B → R over sampled minibatches B ∼ D = {(G, f , r,G ′)k}k∈N. In

this chapter we consider the DQN [24] loss function:

LDQN(D) = EB∼D[(r + γ max
f ′∈FG′

Q(G ′, f ′)−Q(G, f))2], (4.18)

which encodes the expected squared TD-error of one-step predictions over B.

We also consider the policy-based method A2C [67], that directly trains a

parameterized policy πθ : G → P(F) from data gathered following that policy. We

use two separate GNN models to serve as the policy network and the value network,

and train it with the loss function:

LA2C(D) = EB∼D[L
(1)
A2C + ηL

(2)
A2C], (4.19)

L
(1)
A2C = [A(G, f)− V (G)) log π(f |G) + β(A(G, f)]2,

L
(2)
A2C =

∑
f∈FG

π(f |G) log π(f |G).

Here, L
(1)
A2C and L

(2)
A2C denote the loss terms for a single transition sample. The

function A(G, f) = Q(G, f) − V (G) is called the advantage; it computes the differ-

ence between the state-action value function Q and the state value function V (G) =

maxf∈FG Q(G, f). We use β ∈ R as a coefficient for the value loss, and we use η ∈ R+

as a coefficient for the entropy of the output, to encourage exploration within the RL

34

Algorithm 4.4: Exploration Training with RL

1 initialize: G, θ, step
2 D ← ∅
3 while step ¡ max training steps do
4 if RL=”DQN” then
5 # Gather experience visiting frontier nodes
6 f ← action sampling(G)
7 G ′, r ← visit frontier(G, f)
8 step← step+ 1
9 D ← D ∪ {G, f , r,G ′}

10 G ← G ′
11 # Train policy with DQN algorithm
12 πθ ← dqn(D)

13 else if RL=”A2C” then
14 # Gather experience visiting frontier nodes
15 f ← πθ(G)
16 G ′, r ← visit frontier(G, f)
17 step← step+ 1
18 D ← D ∪ {G, f , r,G ′}
19 G ← G ′
20 # Train policy with A2C algorithm
21 if step mod policy update steps = 0 then
22 πθ ← a2c(D)
23 D ← ∅
24 return: πθ

solution space.

4.4.1 Reward Function

In Algorithm 4.1, we use linear normalization functions to map the range of the

raw reward. If the optimal frontier is the one associated with the current pose, the

maximum of the reward is 0, otherwise, it is 1 in all other cases. Algorithm 4.2 is

designed based on the utility function of the EM exploration algorithm, Eq. (4.5),

with an additional term penalizing the travel distance associated with an exploratory

action. The raw reward is the difference in utility between the current state and

35

the subsequent state by taking the actions U . The cost-to-go C(U) with factor α

encourages short travel distances in the raw reward function. The goal is to minimize

this weighted combination of map uncertainty and travel distance with every given

visit to a frontier node.

4.4.2 Exploration Training with RL

As shown in Algorithm 4.4, using an action sampling strategy, the robot chooses a

next-view frontier based on an exploration graph. A reward and a new exploration

graph are assigned after reaching the frontier most recently selected. The policy is

trained using recorded experience data.

4.5 Experiments and Results

(a) An illustration of the simulation environ-

ment

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

−0.3

−0.2

−0.1

0.0

0.1

0.2

Av
er

ag
e

re
wa

rd

Category
DQN+GCN
DQN+GG-NN
DQN+g-U-Net
A2C+GCN
A2C+GG-NN
A2C+g-U-Net

(b) Average reward during the training process

Figure 4.2: The training performance of different methods on randomly generated
simulation environments.

36

4.5.1 Experimental Setup

Our exploration policy is trained in a 2D simulation environment. The simulated

robot has a horizontal field of view of 360° (±0.5°). The measurement range of the

simulated robot is 5m (±0.02m). While exploring, the robot can rotate from −180°

to 180° (±0.2°), and travel from 0m to 2m (±0.1m) at each timestep. All simulated

noise is Gaussian, and we give its standard deviation in the intervals above. Given the

goal frontier location, the robot will first turn to the goal and then drive directly to

the goal following a straight-line path. We use an occupancy grid map to describe the

environment. Each occupancy map is 40m× 40m with randomly sampled landmarks

and random initial robot locations. The feature density of landmarks is 0.005 per

m2 in our experiment. To simplify the problem, landmarks are assumed passable, so

obstacle avoidance is not needed.

The virtual map is made up of 2m × 2m square map cells, with a 1m2 initial

error covariance in each dimension for the virtual landmarks. We note that virtual

landmarks are only used to evaluate the reward of Alg. 4.2, which trades map ac-

curacy against travel expense. Meanwhile, the virtual landmarks are excluded from

both SLAM factor graphs and the exploration graph. The exploration task will be

terminated once 85% of a map has been observed.

The simulation environment is written in Python and C++, and our graph

neural network models are trained using PyTorch Geometric [68]. Our code is freely

available on Github2 for use by others.

2https://github.com/RobustFieldAutonomyLab/DRL_graph_exploration

https://github.com/RobustFieldAutonomyLab/DRL_graph_exploration

37

4.5.2 Policy Training

The training environments are generated with uniformly randomly sampled land-

marks and initial robot locations. A training environment example is shown in Fig.

4.2(a); the uncertainty of virtual landmarks is represented by the error ellipses in each

cell of the map. The blue circle represents the current field of view and the center

point is the current robot location. The green error ellipses represent the uncertainty

of past robot poses. The magenta points are frontier candidates, which comprise the

current action space, and the red point is the selected next-view frontier. Landmarks

are indicated by plus signs, which we plot in yellow once observed by the robot.

Cells containing true landmarks are denoted as occupied in our map to mark their

locations (ensuring a unique and non-trivial occupancy map is obtained from every

exploration trial), but the landmarks are infinetesimal in size, and assumed not to

present occlusions or collision hazards.

The exploration policy is trained by DQN and A2C with three different GNN

models each. The performance of each approach is shown in Figure 4.2(b). For

further use and study in exploration experiments, we select the policies that achieve

the highest average reward for each reinforcement learning framework, which are

DQN+GCN and A2C+GG-NN.

38

4.5.3 Computation Time

40 60 80 100
Map size

0

5

10

15

Co
m

pu
ta

tio
n

tim
e(

s)

RL Policy
EM

Figure 4.3: Computation time for exploration decision-making on different map sizes,
which are square in the dimension indicated. Timing was evaluated on a computer
equipped with an Intel i9 8-core 3.6Ghz CPU and an Nvidia GeForce Titan RTX
GPU. The average computation time is 0.04427s for the RL policy.

The decision-making process is the most time-consuming component of exploration.

The EM exploration algorithm uses forward simulation of a robot’s SLAM process

(including the propagation of uncertainty across virtual landmarks) to select the best

next-view position from the available candidates. Hence the time complexity of the

EM algorithm is O(Naction(C1 + C2)), where Naction is the number of the candidate

actions, C1 is the cost of each iSAM2 predictive estimate over a candidate trajectory

(a function of the number of mapped true landmarks and prior poses) and C2 is the

cost of the covariance update for virtual landmarks (a function of the number of

prior poses and the number of virtual landmarks). We compare computation time

between the EM algorithm and the RL policy on four different sizes of maps, namely

40m × 40m, 60m × 60m, 80m × 80m and 100m × 100m. Each size has the same

feature density, which is 0.005 landmarks per m2. As shown in Fig. 4.3, the average

computation time of the EM algorithm grows dramatically with increasing size of the

map, which leads to larger action, state and belief spaces. The EM algorithm will

ultimately prove unsuitable for real-time exploration in large, complex environments.

39

On the other hand, the RL policies use graph neural networks to predict the best

action so that the computation time of the RL policy remains low, which meets the

requirements for real-time application in high-dimensional state and action spaces.

4.5.4 Exploration Comparison

0 50 100 150 200 250 300
Step

0.4

0.5

0.6

0.7

0.8

La
nd

m
ar

ks
 e

rro
r

(a) Average uncertainty of

landmarks

0 50 100 150 200 250 300
Step

0.0

0.5

1.0

1.5

2.0

2.5
M

ax
 lo

ca
liz

at
io

n
un

ce
rta

in
ty

(b) Max uncertainty of the

trajectory

0 50 100 150 200 250 300
Step

60

80

100

120

M
ap

 e
nt

ro
py

Category
Nearest Frontier
Random
EM
Supervised+GCN
DQN+GCN
A2C+GG-NN

(c) Map entropy reduction

Figure 4.4: The result of 50 exploration trials of each method, with the same randomly
initialized landmarks and robot start locations, on 40m× 40m maps (the first three
metrics shown are plotted per time-step of the simulation).

40

0 200 400 600 800 1000
Step

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
La

nd
m

ar
ks

 e
rro

r

(a) Average uncertainty of

landmarks

0 200 400 600 800 1000
Step

0

5

10

15

20

25

M
ax

 lo
ca

liz
at

io
n

un
ce

rta
in

ty

(b) Max uncertainty of the

trajectory

0 200 400 600 800 1000
Step

150

175

200

225

250

275

300

M
ap

 e
nt

ro
py

Category
Nearest Frontier
Random
EM
Supervised+GCN
DQN+GCN
A2C+GG-NN

(c) Map entropy reduction

0 500 1000 1500 2000
Step

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

La
nd

m
ar

ks
 e

rro
r

(d) Average uncertainty of

landmarks

0 500 1000 1500 2000
Step

0

5

10

15

20

25

M
ax

 lo
ca

liz
at

io
n

un
ce

rta
in

ty

(e) Max uncertainty of the

trajectory

0 500 1000 1500 2000
Step

250

300

350

400

450

500

550

M
ap

 e
nt

ro
py

Category
Nearest Frontier
Random
EM
Supervised+GCN
DQN+GCN
A2C+GG-NN

(f) Map entropy reduction

0 1000 2000 3000 4000
Step

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

La
nd

m
ar

ks
 e

rro
r

(g) Average uncertainty of

landmarks

0 1000 2000 3000 4000
Step

0

5

10

15

20

25

M
ax

 lo
ca

liz
at

io
n

un
ce

rta
in

ty

(h) Max uncertainty of the

trajectory

0 1000 2000 3000 4000
Step

400

500

600

700

800

M
ap

 e
nt

ro
py

Category
Nearest Frontier
Random
EM
Supervised+GCN
DQN+GCN
A2C+GG-NN

(i) Map entropy reduction

Figure 4.5: The results of 50 exploration trials on large-size maps (each of which is
larger than the 40m×40m maps used for training); (a), (b), (c) represent 60m×60m
maps, (d), (e), (f) represent 80m×80m maps, and (g), (h), (i) represent 100m×100m
maps.

We compared the learned policies with (1) a nearest frontier approach, (2) the se-

lection of a random frontier, (3) the EM approach, and (4) the GCN model trained

by supervised learning in [2] over 50 exploration trials. For each trial, every ap-

41

proach uses the same random seed to generate the same environment. Results of this

comparison are shown in Figure 4.4, where we evaluate three metrics: the average

landmark uncertainty (of real landmarks only), the maximum localization uncertainty

along the robot’s trajectory, and occupancy map entropy reduction. The EM algo-

rithm offers the best performance, but is not real-time viable in high-dimensional

state-action spaces. Both the Nearest Frontier method and the Random method are

real-time viable methods. However, the Nearest Frontier method has the highest

landmark and localization uncertainty, and the Random method has the lowest ex-

ploration efficiency. The learning-based methods can address real-time applications

and offer low landmark and localization uncertainty. The Supervised+GCN method

and DQN+GCN method have similar map entropy reduction rates, but DQN+GCN

offers lower landmark and localization uncertainty because it travels longer distances

from one iteration to the next by selecting high-value actions. In Fig. 4.4(c), both

supervised+GCN and DQN+GCN have slower entropy reduction rates than EM and

the A2C+GG-NN policy. When supervised+GCN does not perform with high accu-

racy, it will tend toward random action selection, because it is trained using binary

labels.

Unlike supervised learning, the RL policies are seeking the largest value for

each step. Thus, when DQN+GCN does not have high accuracy, it will choose

the highest-value action based on predicted values. Although the DQN+GCN pol-

icy has relatively low accuracy in predicting the highest-value action, it still selects

high-value actions instead of random ones, which leads to more accurate mapping.

The A2C+GG-NN policy has the highest exploration efficiency among learning ap-

proaches, and offers lower landmark uncertainty than the Supervised+GCN method,

but not lower than the DQN+GCN method. Representative exploration trials for all

of the algorithms compared in Figure 4.4 are provided in our video attachment.

42

4.5.5 Scalability

During testing, it is possible to encounter large-scale environments that induce a

lengthier pose history, more landmarks, and more frontiers, generating larger explo-

ration graphs over longer-duration operations than a robot may have been exposed

to during training. We demonstrate here that our RL policies can be trained in small

environments, and scale to large environments to perform exploration tasks. In this

experiment, our RL policies are trained on 40m×40m maps with 0.005 landmarks per

m2 feature density. The size of the testing environments are 60m× 60m, 80m× 80m

and 100m× 100m with the same feature density.

The exploration results are shown in Fig. 4.5. The A2C+GG-NN method has

nearly the same exploration efficiency as the EM algorithm and the Nearest Fron-

tier approach, which all explore faster than the Supervised+GCN and DQN+GCN

methods as shown in Figs. 4.5(c), 4.5(f), and 4.5(i). The landmark uncertainty (Figs.

4.5(a), 4.5(d), 4.5(g)) and localization uncertainty (Fig. 4.5(b), 4.5(e), 4.5(h)) of our

learning-based methods gradually degrade in performance with increasing map size.

The Supervised+GCN method accumulates the largest landmark and localization

uncertainty among learning-based methods for each map size. DQN+GCN achieves

better results over 60m × 60m and 80m × 80m maps than A2C+GG-NN, but the

performance of A2C+GG-NN is better than DQN+GCN over 100m × 100m maps

because of the overfitting of DQN+GCN. Overall, A2C+GG-NN demonstrates the

best scalability performance based on its high exploration efficiency and relatively

low landmark and localization uncertainty across all trials. Representative explo-

ration trials showing the performance of A2C+GG-NN across all of the map sizes

examined are provided in our video attachment.

43

4.6 Conclusions

We have presented a novel approach by which a mobile robot can learn, without

human intervention, an effective policy for exploring an unknown environment under

localization uncertainty, via exploration graphs in conjunction with GNNs and rein-

forcement learning. The exploration graph is a generalized topological data structure

that represents the states and the actions relevant to exploration under localization

uncertainty, and we build upon our previous work that used them for supervised

learning with GNNs.

Through our novel integration of this paradigm with reinforcement learning,

a robot’s exploration policy is shaped by the rewards it receives over time, and a

designer does not need to tune hyperparameters manually, as is the case for supervised

learning. Additionally, the policy learned from RL algorithms is non-myopic and

robust across a variety of test environments. Our learned RL policies have exhibited

the best performance among the real-time viable exploration methods examined in

this chapter. Moreover, we have shown that policies learned in small-scale, low-

dimensional state-action spaces can be scalable to testing in larger, higher-dimensional

spaces. The RL policies learned offered high exploration efficiency and relatively low

map and localization uncertainty among the real-time viable exploration methods

examined, across the various examples explored.

44

Chapter 5

Zero-Shot Reinforcement Learning for Autonomous Exploration

In this chapter, we aim to produce zero-shot reinforcement learning for more realis-

tic exploring mobile robots gathering 3D lidar observations, using the same SLAM

framework as in [12] to support exploration. Coupling the GNN-based DRL model

with this SLAM framework, the learned policy successfully achieves zero-shot transfer

in both virtual and real environment tests.

5.1 Problem Formulation

5.1.1 Simultaneous Localization and Mapping Framework

An illustration of the SLAM factor graph is shown in Fig. 5.1(a). There are two

types of sequential factors; blue factors indicate the odometry measurements (φO)

between two consecutive poses, and green factors represent sequential scan matching

constraints (φSSM). These are provided by the iterative closest point (ICP) algorithm,

using 3D LiDAR point clouds to estimate the relative transformation between con-

secutive poses. There are also two types of loop closure constraints. Pose matching

(φPM), indicated by magenta in Fig. 5.1(a), provides a loop closure constraint when

the point cloud from the current pose has been successfully matched with the point

cloud from a previous pose. Finally, segment matching (φSM), colored by red in Fig.

5.1(a), achieves a loop closure when two poses observe the same segmented object in

their respective point clouds (using the approach of [69]).

The motion model and the measurement model of our SLAM framework are

45

x x x x xx

(a)

x x x x xx

f f ff

(b)

Figure 5.1: An illustration of the SLAM factor graph and the exploration
graph. Top: The SLAM factor graph contains four different types of constraints:
blue factors are provided by odometry measurements; green factors are obtained
from sequential scan matching of two consecutive poses; red factors represent the loop
closures provided by point cloud segment matching; magenta factors are loop closures
generated by pose matching. Bottom: The corresponding exploration graph is shown,
containing all poses from the SLAM factor graph, and waypoints representing map
frontiers. If two poses have a constraint joining them in the SLAM factor graph, an
edge will be assigned to connect these two poses. The current pose xi is connected
to the nearest frontier, and any frontiers whose paths achieve place revisiting are
connected to the prior poses they revisit. All the edges in the exploration graph are
weighted with Euclidean distances.

defined as:

xi = hi(xi−1,ui) + wi, wi ∼ N (0, Qi), (5.1)

zk = gk(xik) + vk, vk ∼ N (0, Rk), (5.2)

where X = {xi}ti=1 are 6-DOF robot poses and U = {ui}ti=1 is a given motion input.

Then we define the factor graph:

φ(x) = φ0(x0)
∏
i

φO
i (xi)

∏
j

φSSM
j (xj) (sequential)

∏
p

φPM
p (xp)

∏
q

φSM
q (xq). (loop closures)

46

The SLAM problem then becomes a nonlinear least-squares optimization problem on

a factor graph. We use iSAM2 [64] to solve this problem.

We adopt the virtual map framework from the EM exploration algorithm of

[11]. A virtual map is uniformly discretized at the same or lower resolution than the

robot’s occupancy map, and contains virtual landmarks, l̃k ∈ L̃, populating the map’s

cells. Each virtual landmark has a large initial covariance, which will be driven down

by the robot as it observes the contents of the map cell. In this setting, the goal of

exploration is to minimize the covariance of all virtual landmarks, which leads a robot

to both explore efficiently and to produce an accurate map. The utility function of

the current state is defined as follows:

U(L̃) =
∑
l̃k∈L̃

log det(Σl̃k
), (5.3)

where Σl̃k
is the covariance matrix for virtual landmark l̃k.

5.1.2 Exploration Graph for Real Environments

We define the exploration graph G = (V , E) as shown in Fig. 5.1(b). There are two

types of vertices in V . X ⊂ V contains the robot pose history. Poses connected by

constraints in the SLAM factor graph in Fig. 5.1(a) are also connected with edges

in the exploration graph. Furthermore, the exploration graph includes exploration

waypoints derived from map frontiers, F ⊂ V . These frontier nodes are extracted

from the map’s boundaries between free and unknown areas. The current pose xt is

connected with the nearest frontier to its location. If a frontier can provide place-

revisiting through either pose matching or segment matching, we connect the previous

poses associated with that loop closure to this frontier. All other frontiers, which

are neither the nearest frontier to the current pose, nor achieve place-revisiting, are

47

excluded from the exploration graph. All edges in the graph are weighted by their

Euclidean distances.

Each vertex ni ∈ V has a feature vector:

si = [si1 , si2 , si3 , si4],

si1 = φA(Σi), (5.4)

si2 =

√
(xi − xt)2 + (yi − yt)2, (5.5)

si3 = arctan2(yi − yt, xi − xt), (5.6)

si4 =


0 ni = xt

1 ni ∈ {fn}

−1 otherwise

. (5.7)

In Eq. (5.4), we adopt the A-Optimality criterion as a metric to evaluate the un-

certainty level of each node. The covariances of frontier vertexes F are extracted

from the virtual map. We capture the geometric information of the current robot

state using Eqs. (5.5) and (5.6), which contain the relative distance and orientation

information between current pose xt and the node ni. The last feature si4 is used to

indicate the identity of each node. The current pose is labeled as 0, all previous poses

are -1, and frontiers are 1.

5.2 Algorithms and System Architecture

5.2.1 Graph Neural Networks

In this chapter, we use two Graph U-Nets (g-U-Nets) [70] to serve as the policy

network and the value network, respectively. Similar to U-Net [71], g-U-Nets have

graph pooling layers to encode the input feature vectors of nodes in the input graph.

48

Additionally, the graph unpooling layers are used to decode the graphs in the hidden

layers to provide the output graphs. Besides the pooling and unpooling layers, each

encoder and decoder has a Graph Convolutional Network (GCN) [20] layer to update

the graph features. The depth of our g-U-Nets is 3 and the number of features for

each hidden layer is 1000. A multilayer perceptron (MLP) output layer is adopted to

provide the final output prediction. A dropout layer with a 0.5 dropout rate is placed

between the output of our g-U-Nets and the MLP output layer.

5.2.2 Deep Reinforcement Learning

In our framework, the robot is solving a decision-making problem over exploration

graphs using a learned policy from DRL. The candidate actions are paths from the

current pose to the frontier nodes in the exploration graph. The exploration graph

contains information about all past poses, their respective uncertainty, and how they

relate to map frontiers. At each decision-making instant k, the state of our system

is represented by an exploration graph Gk ∈ G. A reward Rk ∈ R is assigned to the

selected action fk ∈ FGk . The overall decision-making process can be modeled as a

Markov Decision Process 〈G,F,Pr, γ〉 [66].

We consider the A2C [67] policy-based DRL algorithm in this chapter, for

which two separate g-U-Nets serve as the policy network and the value network. The

loss function is defined as follows:

LA2C(D) = EB∼D[L
(1)
A2C + ηL

(2)
A2C], (5.8)

L
(1)
A2C = [A(G, f)− V (G)) log π(f |G) + β(A(G, f)]2,

L
(2)
A2C =

∑
f∈FG

π(f |G) log π(f |G),

where the advantage function is defined as A(G, f) = Q(G, f)− V (G) to evaluate the

49

Algorithm 5.1: Reward Function

1 input: Exploration graph G, Frontier node f
2 # Calculate the raw reward (Eq. 5.9)

3 R0
G = U0(L̃)− U ′U(L̃′)− αC(U)

4 # Normalize the raw reward
5 RG = {rf ′ = R0

G}
6 l = minRG, u = maxRG
7 rf ← (rf − l)/(u− l)
8 # Compute projection based on nearest frontier
9 ft = nearest frontier(xt)

10 if u = raw reward(ft) then
11 return rf − 1 # r(G, f) ∈ [−1, 0]

12 return 2rf − 1 # r(G, f) ∈ [−1, 1]

difference between the state value and the state-action value. β ∈ R is a coefficient

for the loss of the value function. The entropy coefficient η ∈ R+ is used to weigh

output entropy for encouraging exploration during training.

5.2.3 Reward Function

We use the utility function given in Eq. (5.3) from the EM exploration algorithm

[11], whose behavior we wish to emulate, to compute the raw reward for actions that

travel to each candidate frontier. The raw reward is defined as follows:

R0
G = U0(L̃)− U ′U(L̃′)− αC(U), (5.9)

where U contains sequential actions to the selected frontier position. The output of

cost-to-go function C(U) is the travel distance weighed by coefficient α, expressing a

preference for shorter paths. We then set a new range for these raw rewards by linear

normalization. If the frontier selected by the EM algorithm is the nearest frontier

associated with the current pose, the range of the reward is [−1, 0]. Otherwise, the

50

range is [−1, 1]. The reward function is described in Alg. 5.1.

Figure 5.2: The office-like Gazebo environment used for training.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Step 1e4

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Av
er

ag
e

re
wa

rd

Category
A2C+g-U-Net

Figure 5.3: The average reward during training.

5.2.4 Computational Complexity

For the EM algorithm, the computational complexity of the decision-making process

is O(Nactions(C1 + C2)), where C1 = O(n3) bounds the complexity of the iSAM2

update (n is the number of poses), and C2 = O(m) bounds the covariance update for

virtual landmarks (m is the number of virtual landmarks) [11]. The computation time

increases significantly in the size of the state-action space, limiting the framework’s

applicability. On the other hand, as shown in [3], the computation time for decision-

making with our fully trained DRL GNN framework is nearly constant, allowing

real-time performance across a wide range of problems.

51

5.3 Experiments and Results

5.3.1 Experimental Setup

We assume that an unmanned ground vehicle (UGV) must explore an indoor environ-

ment populated with 3D obstacles, it relies upon 6 degree-of-freedom SLAM, and it is

permitted to reason about exploration with respect to the ground plane, where belief

space planning is performed. The robot uses a 2D map to perform three degree-of-

freedom motion planning reach the goal position. The simulation environments used

in this work are built in Gazebo and explored using the Robot Operating System

(ROS). A simulated Clearpath Jackal robot is equipped with wheel odometry and a

VLP-16 3D LiDAR. We restrict the sensor range of our LiDAR to 3 meters to induce

challenging pose uncertainty in our exploration comparison. We adopt the default

noise settings in Gazebo for the simulated sensors, and we manually add Gaussian

noise to robot translation and rotation actions of standard deviation 0.01m and 0.08°,

respectively. We use the same SLAM framework employed in [12], with the GTSAM

library [63]. Dijkstra’s algorithm is used to generate a path to each frontier waypoint.

A 2D map of virtual landmarks is maintained in the ground plane to provide the

reward for each decision-making selection during the DRL policy training. The reso-

lution of the map is 0.5m per cell and the standard deviation of the initial covariance

of each virtual landmark is 0.2m. We terminate the exploration task once 85% of the

environment’s ground plane has been explored. Additionally, we keep track of the

robot’s volumetric sensor coverage of the environment using a separate 3D occupancy

map of the workspace.

Our graph neural network models are trained using PyTorch Geometric [68].

The desktop used for policy training and simulation testing is equipped with an Intel

i9 3.6Ghz CPU and an Nvidia Geforce Titan RTX GPU. For real-world exploration

52

experiments (testing only), our algorithms run on a Dell Precision 3541 mobile work-

station laptop which has an Intel Xeon CPU and an Nvidia Quadro P620 GPU.

5.3.2 Policy Training

To evaluate the transferability of our proposed approach, we only use one environment

during training. The office-like training environment is shown in Fig. 5.2. We ran-

domly placed 8 objects in this environment. The robot has nine fixed initial locations

in this environment from which it begins exploring.

We apply 15,000 training episodes in total, which, motivated by the expense

of our ROS/Gazebo simulation, is orders of magnitude fewer than in our prior work

with 2D landmark-based SLAM [3]. We set the learning rate to 0.0001 and perform a

policy update every 10 steps. The average reward obtained during training is shown

in Fig. 5.3. Throughout this process, the state of the system is represented by the

exploration graph, and the action space is comprised of the frontier nodes in the

exploration graph.

Figure 5.4: The Clearpath Jackal UGV used in our experiments.

53

Figure 5.5: Environment used for real-world deployment of our UGV.

5.3.3 Simulated Exploration Comparison

We use the learned policy trained in the office-like environment to test in two dif-

ferent environments. In Fig. 5.6(a), we build a “street environment” which has the

same 20m× 20m size as the training environment. However, this street environment

contains fewer objects. Also, the size and the shape of these objects differ from the

training environment. The exploration results are shown in Fig. 5.7(a) and 5.7(b).

We compare the learned graph-based policy with (1) a nearest frontier (NF) approach

[30], (2) the EM algorithm [11, 12], and (3) a random frontier selection approach over

10 exploration trials. For each trial, we always initialize the robot from the center of

the testing environment. We compute the mean absolute error between the mapped

3D points associated with the estimated robot trajectories and the ground truth tra-

jectories to determine the map error. We also compute the total 3D volume mapped

during each trial.

54

(a) (b)

Figure 5.6: Gazebo simulation testing environments.

0 100 200 300
Distance

0.05

0.10

0.15

0.20

0.25

M
ap

 E
rro

r

(a)

0 100 200 300
Distance

50

100

150

200

250

300

Vo
lu
m
e

Algorithm
EM
NF
Random
Policy

(b)

0 200 400 600 800
Distance

0.1

0.2

0.3

0.4

0.5

M
ap

 E
rro

r

(c)

0 200 400 600 800
Distance

100

200

300

400

500

600

700

Vo
lu
m
e

Algorithm
EM
NF
Random
Policy

(d)

Figure 5.7: Autonomous exploration results from our Gazebo simulation testing en-
vironments.

The EM algorithm achieves the lowest map error in the end, but has a slightly

55

worse exploration efficiency than the NF approach. Although the NF approach is

the most efficient method for covering an unknown environment, it offers the worst

map accuracy during exploration because it achieves the fewest loop closures. The

random method achieves the most loop closures during exploration, but its long travel

distances generate a large accumulated error that cannot be completely eliminated

by these loop closures. It also covers the environment very inefficiently. Our learned

policy achieves a very similar exploration efficiency to the EM algorithm, and its map

accuracy is surpassed only by EM algorithm, whose performance we seek to emulate.

The second simulation testing environment is shown in Fig. 5.6(b). In this

“parking garage” environment, there are fifteen evenly spaced cars and the size of this

environment is 30m × 30m, which is larger than the training environment. Like the

first simulation environment, each exploration algorithm has 10 trials initialized from

the center of the environment. The learned policy has a slightly worse exploration

efficiency than the EM algorithm in this large environment, but it once again achieves

the second lowest map error (again, second to the EM algorithm) compared with other

exploration methods. All other algorithms have the same relative performance as in

the “street” environment.

56

(a) (b)

(c) (d)

Figure 5.8: Ground-plane map and trajectory resulting from our graph-based policy’s
exploration of the Stevens ABS Engineering Center.

57

5.3.4 Real-world Exploration

Our learned policy can also be transferred to a real-world environment. Our Clearpath

Jackal UGV, shown in Fig. 5.4, is equipped with the same odometry and LiDAR

sensing as the simulated UGV. We test our learned policy in the ABS Engineering

Center at Stevens Institute of Technology shown in Fig. 5.5. In Fig. 5.8, we present

an example of autonomous exploration using the learned, graph-based policy. The

robot pose is represented by red-green axes, and the yellow ellipsoid indicates the

uncertainty of the current pose. The cyan path is the path to the selected frontier,

and gray paths are for other unselected frontiers. The cost map covering the ground

plane represents the uncertainty of the current virtual map, where blue color indicates

the lowest uncertainty. Magenta represents the high uncertainty of our virtual map

prior. We terminate the exploration task if there are no frontiers detected on the

current map. Although our exploration algorithm has real-time computation, there

is a short-term pause in each decision-making step because of the computational

expense of SLAM and the required update of occupancy maps and virtual maps. In

Fig. 5.8(a), the robot chooses the nearest frontier to explore the environment, rather

than the longer-distance path to obtain a loop closure, because this is the beginning

of the exploration and a loop closure only reduces the uncertainty of a small portion

of the current virtual map. In Fig. 5.8(b), the robot selects a longer-distance path

to obtain a loop closure to reduce the uncertainty of the current virtual map. In Fig.

5.8(c), the uncertainty of the right bottom area on the map is reduced by taking the

selected path. We present the final exploration result in Fig. 5.8(d). The overall

exploration process is shown in our video attachment.

58

5.4 Learning Exploration from A Portfolio of Algorithms

In the previous sections, the learned exploration policy was trained by the EM al-

gorithm. However, the EM algorithm is not always the best exploration method in

any given environment. For example, the nearest frontier (NF) approach achieves the

best exploration performance in the environment shown in Fig. 5.9, which is empty

in its center. As shown in Fig. 5.10(a) and Fig. 5.10(b), the NF method offers bet-

ter exploration performance than the EM algorithm because localization uncertainty

and map error cannot be reduced by the place revisiting process in this particular

environment, due to the lengthy travel required for place recognition. Therefore, The

nearest frontier (NF) method provides the best exploration performance in the new

training environment.

Figure 5.9: The empty-center Gazebo environment used for learning the NF strategy.

0 100 200 300 400
Distance

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
ap

 E
rro

r

(a)

0 100 200 300 400
Distance

50

100

150

200

250

300

350

Vo
lu
m
e

Algorithm
EM
NF

(b)

Figure 5.10: Autonomous exploration results from the new empty-center Gazebo
simulation training environment.

59

5.4.1 Reward Function

The policy should imitate the NF exploration strategy in the given environment. The

raw reward is generated by the NF utility, which is defined as follows:

R0
G = C(U), (5.10)

where U contains sequential actions to the selected frontier position and C(U) is the

travel cost function. We use the same normalization method as in 5.2.3 to generate

the reward for training. The maximum reward is from the shortest travel distance.

5.4.2 Policy Training

The simulation setting and the robot are the same as those described in Sec. 5.3.

We use a new empty-center Gazebo simulation environment shown in Fig. 5.9 to add

the NF strategy to the learned policy in Sec 5.3.2. We use the learned policy trained

by the EM algorithm as the initial policy. Because the feature NF method is easy to

learn, overfitting problems will occur if we train our new policy with many training

steps. To train a policy to learn the NF method, 500 additional training episodes

are used. The robot starts from the center position of the environment during the

training process. We still use the A2C RL algorithm with a 0.0001 learning rate and

a policy update rate of 10 to learn the new policy.

5.4.3 Exploration Performance

For this study, we have built a new testing environment that is 30m × 40m in size.

The environment, illustrated in Fig. 5.11, has a similar structure to the training

environment of Fig. 5.9, but the objects have different shapes and quantities. Fig.

5.12(a) and Fig. 5.12(b) show the exploration results in the new testing environment.

60

We compare the new learned policy with (1) an NF approach, (2) the EM algorithm,

and (3) the previous policy trained by the EM method. Each method has 10 explo-

ration trials. In Fig. 5.12(a), the EM algorithm has the largest map error. The policy

trained by the EM algorithm is better than the EM algorithm because the learned

policy loses the estimation accuracy in this large map, which happens to produce a

better map result than the original EM algorithm. The new policy has nearly the

same low map error as the NF approach. In Fig. 5.12(b), the policy trained by

the EM algorithm has the lowest exploration efficiency because it loses its prediction

accuracy. The NF approach has the highest exploration efficiency because it always

chooses the shortest path to explore. The performance of the EM algorithm and the

new policy is similar, and they lie between the NF approach and the previous policy.

Figure 5.11: The Gazebo environment used for testing.

61

0 200 400 600 800
Distance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ap

 E
rro

r

(a)

0 200 400 600 800
Distance

0

200

400

600

800

Vo
lu

m
e

Algorithm
EM
NF
Policy
New Policy

(b)

0 100 200 300 400
Distance

0.1

0.2

0.3

0.4

0.5

M
ap

 E
rro

r

(c)

0 100 200 300 400
Distance

100

200

300

400

500

600

700

Vo
lu

m
e

Algorithm
EM
NF
Policy
New Policy

(d)

Figure 5.12: Autonomous exploration results from Gazebo simulation testing envi-
ronments. The results at top correspond to the environment shown in Fig. 5.11, and
the results at bottom correspond to the environment shown in Fig. 5.6(b).

To prove that our new policy can still use the strategy learned from the EM

algorithm, we run 10 exploration test trials in the previous testing environment shown

in Fig. 5.6(b). In Fig. 5.12(c), the new policy has slightly worse performance than

the previous policy, but the difference is acceptable. In Fig. 5.12(d), the exploration

efficiency is close to the EM algorithm and better than the previous policy.

5.5 Conclusions

In this chapter, we present a zero-shot transfer learning framework for mobile robot

exploration under uncertainty that leverages an exploration graph as an efficient

abstraction of a robot’s state and environment. We have enhanced the DRL GNN

62

framework developed in our prior work [3] so it can be applied, for the first time, to the

exploration of environments populated with complex obstacles, perceived using dense

3D range observations. Successful training now depends on high-fidelity simulation,

and accordingly, our approach offers a highly efficient training process to meet these

requirements; the exploration policy is trained in a single virtual environment and

is successfully transferred to both virtual and real environments containing different

obstacle quantities, arrangements, and geometries. The exploration graph proposed in

this work offers generality that is suitable for a wide variety of real-world exploration

tasks. The uncertainty of the traversability information can be embedded within the

edges of the exploration graph to predict the uncertainties and hazards of the current

environment.

Moreover, a new exploration policy learns from a portfolio of algorithms to

explore different environments. We extend the previous policy trained by the EM

algorithm to learn a new NF exploration strategy for a specific environment structure

without forgetting the previous EM strategy training. Hence, the new learned policy

is capable of choosing an optimal exploration strategy according to the current state

of the environment.

63

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objective of this thesis is to achieve high-performance real-time decision-making

during complex instances of mobile robot exploration, using deep learning models.

The exploration tasks are difficult to learn because the test environments are un-

known, so the robot needs to learn the exploration strategies through training in

environments with relevant characteristics. The proposed exploration graph is an ef-

fective state representation for a DRL model. With GNNs, a mobile robot can learn

high-performance exploration strategies through a set of training environments which

differ greatly from the testing environments. The GNN-based RL policy offers ap-

pealing generalizability, which means the learned policy can be used in a wide range of

state-action spaces, as long as the exploration graph topology, and key characteristics

of the robot and its SLAM process, are similar to those of the training environments.

Moreover, one of the proposed learning models offers zero-shot transfer perfor-

mance – policies learned from a simulation environment are successfully transferred

to both virtual and real environments that differ from the training environment. Ad-

ditionally, the proposed system can learn from a portfolio of exploration algorithms,

so the learned policy is able to choose the best exploration strategy for a specific test

environment.

64

6.2 Future Work

There are two keys areas that comprise promising topics for future inquiry related to

the focus of this thesis.

6.2.1 Reinforcement Learning for Learning from a Portfolio of Algo-

rithms

Although learning a new RL policy atop an existing policy can combine two ex-

ploration methods into one unified policy, achieving the best possible efficiency and

performance when training a policy that combines multiple strategies remains an open

problem. Future work may benefit from considering the use of curricula in reinforce-

ment learning methods; [72], [73], [74] are able to help train a policy for multi-task

purposes. Moreover, the Asynchronous Advantage Actor Critic (A3C) [28] reinforce-

ment learning model can train a multi-task policy similar to ours via parallel training

with multiple actors.

6.2.2 SLAM Graph Optimization by Learning Methods

The decision-making process for autonomous mobile robot exploration is nearly real-

time viable when aided by neural networks as proposed in this work. However, the

optimization process required by most SLAM frameworks is still time-consuming, and

is not real-time viable over dense observations and lengthy time-scales. A collabora-

tion with Yewei Huang, a fellow lab member of RFAL, has been looking into learning

the correct localization results from SLAM training data produced in simulation en-

vironments. Future work will train graph neural network (GNN) models to estimate

the result for the SLAM graph optimization process, so the overall exploration process

can meet needs of real-time operation in any given environment.

65

Bibliography

[1] F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration and mapping

for mobile robots via deep reinforcement learning,” in AIAA Scitech 2019 Forum,

p. 0396, 2019.

[2] F. Chen, J. Wang, T. Shan, and B. Englot, “Autonomous exploration under

uncertainty via graph convolutional networks,” in International Symposium on

Robotics Research, 2019.

[3] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous

exploration under uncertainty via deep reinforcement learning on graphs,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2020.

[4] F. Chen, P. Szenher, Y. Huang, J. Wang, T. Shan, S. Bai, and B. Englot, “Zero-

shot reinforcement learning on graphs for autonomous exploration under uncer-

tainty,” in IEEE International Conference on Robotics and Automation (ICRA),

2021.

[5] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to

large-scale mapping of urban structures,” The International Journal of Robotics

Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[6] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-

based slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4,

pp. 31–43, 2010.

66

[7] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,” Foundations

and Trends in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[8] R. Valencia, J. V. Miró, G. Dissanayake, and J. Andrade-Cetto, “Active pose

slam,” in IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1885–1891, 2012.

[9] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of uncertainty

criteria for active slam,” in IEEE International Conference on Robotics and Au-

tomation, pp. 2080–2087, 2012.

[10] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration

using rao-blackwellized particle filters.,” in Robotics: Science and Systems, vol. 2,

pp. 65–72, 2005.

[11] J. Wang and B. Englot, “Autonomous exploration with expectation-

maximization,” in International Symposium on Robotics Research, 2017.

[12] J. Wang, T. Shan, and B. Englot, “Virtual maps for autonomous exploration

with pose slam,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 4899–4906, 2019.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[14] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hub-

bard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation

network,” in Advances in Neural Information Processing Systems, pp. 396–404,

1990.

67

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] S. El Hihi and Y. Bengio, “Hierarchical recurrent neural networks for long-term

dependencies,” in Advances in Neural Information Processing Systems, pp. 493–

499, 1996.

[18] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,

no. 2, pp. 157–166, 1994.

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The

graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,

no. 1, pp. 61–80, 2008.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-

lutional networks,” in International Conference on Learning Representations

(ICLR), 2017.

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural

networks,” International Conference on Learning Representations (ICLR), 2016.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,

“Graph attention networks,” International Conference on Learning Representa-

tions (ICLR), 2018.

68

[23] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–

533, 2015.

[25] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Du-

eling network architectures for deep reinforcement learning,” in International

Conference on Machine Learning, pp. 1995–2003, 2016.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

Press, 2018.

[27] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

in International Conference on Machine Learning, pp. 1928–1937, 2016.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[30] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Pro-

ceedings of the IEEE International Symposium on Computational Intelligence in

Robotics and Automation (CIRA), pp. 146–151, 1997.

69

[31] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael,

and V. Kumar, “Information-theoretic planning with trajectory optimization for

dense 3d mapping.,” in Robotics: Science and Systems, vol. 11, 2015.

[32] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic map-

ping using cauchy-schwarz quadratic mutual information,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 4791–4798, 2015.

[33] B. J. Julian, S. Karaman, and D. Rus, “On mutual information-based control

of range sensing robots for mapping applications,” The International Journal of

Robotics Research, vol. 33, no. 10, pp. 1375–1392, 2014.

[34] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.

University of Illinois Press, 1949.

[35] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”

Computer, vol. 22, no. 6, pp. 46–57, 1989.

[36] M. G. Jadidi, J. V. Miró, R. Valencia, and J. Andrade-Cetto, “Exploration on

continuous gaussian process frontier maps,” in IEEE International Conference

on Robotics and Automation (ICRA), pp. 6077–6082, 2014.

[37] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Mutual information-based explo-

ration on continuous occupancy maps,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 6086–6092, 2015.

[38] S. Bai, J. Wang, K. Doherty, and B. Englot, “Inference-enabled information-

theoretic exploration of continuous action spaces,” in International Symposium

on Robotics Research, pp. 419–433, 2015.

70

[39] S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic exploration with

bayesian optimization,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 1816–1822, 2016.

[40] S. Bai, F. Chen, and B. Englot, “Toward autonomous mapping and exploration

for mobile robots through deep supervised learning,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 2379–2384, 2017.

[41] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning

robot for search and rescue applications: Exploration in unknown cluttered en-

vironments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617,

2019.

[42] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with

model-based acceleration,” in International Conference on Machine Learning,

pp. 2829–2838, 2016.

[43] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl

2: Fast reinforcement learning via slow reinforcement learning,” International

Conference on Learning Representations (ICLR), 2017.

[44] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,”

International Conference on Learning Representations (ICLR), 2017.

[45] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obsta-

cle avoidance,” in IEEE/RSJ international conference on intelligent robots and

systems (IROS), pp. 2759–2764, 2016.

71

[46] L. Tai and M. Liu, “Towards cognitive exploration through deep reinforcement

learning for mobile robots,” arXiv preprint arXiv:1610.01733, 2016.

[47] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforcement learn-

ing,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-

gence, pp. 2140–2146, 2017.

[48] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,

“Target-driven visual navigation in indoor scenes using deep reinforcement learn-

ing,” in IEEE international conference on robotics and automation (ICRA),

pp. 3357–3364, 2017.

[49] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey, “Learning to gather in-

formation via imitation,” in IEEE International Conference on Robotics and

Automation (ICRA), pp. 908–915, 2017.

[50] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive map-

ping and planning for visual navigation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2616–2625, 2017.

[51] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration net-

works,” Advances in Neural Information Processing Systems, vol. 29, pp. 2154–

2162, 2016.

[52] R. S. Sutton, A. G. Barto, et al., Introduction to Reinforcement Learning,

vol. 135. MIT Press, 1998.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

International Conference on Learning Representations (ICLR), 2015.

72

[54] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural

network architectures for large scale acoustic modeling,” in Fifteenth Annual

Conference of the International Speech Communication Association, 2014.

[55] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing

model uncertainty in deep learning,” in International Conference on Machine

Learning, pp. 1050–1059, 2016.

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning

on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[58] “Random dungeon generator.” http://perplexingtech.weebly.com/

random-dungeon-demo.html.

[59] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller,

R. Hadsell, and P. Battaglia, “Graph networks as learnable physics engines

for inference and control,” in International Conference on Machine Learning,

pp. 4470–4479, 2018.

[60] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Re-

lational inductive biases, deep learning, and graph networks,” arXiv preprint

arXiv:1806.01261, 2018.

http://perplexingtech.weebly.com/random-dungeon-demo.html
http://perplexingtech.weebly.com/random-dungeon-demo.html

73

[61] K. Chen, J. P. de Vicente, G. Sepulveda, F. Xia, A. Soto, M. Vázquez, and

S. Savarese, “A behavioral approach to visual navigation with graph localization

networks,” in Robotics: Science and Systems, 2019.

[62] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured policy

with graph neural networks,” in International Conference on Learning Represen-

tations (ICLR), 2018.

[63] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction.” Technical

Report, Georgia Institute of Technology, GT-RIM-CP&R-2012-002, 2012.

[64] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,

“isam2: Incremental smoothing and mapping using the bayes tree,” The Inter-

national Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[65] M. Kaess and F. Dellaert, “Covariance recovery from a square root information

matrix for data association,” Robotics and Autonomous Systems, vol. 57, no. 12,

pp. 1198–1210, 2009.

[66] M. L. Puterman, Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[67] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,

A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., “Starcraft ii: A new

challenge for reinforcement learning,” arXiv preprint arXiv:1708.04782, 2017.

[68] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch

geometric,” arXiv preprint arXiv:1903.02428, 2019.

74

[69] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “Segmatch:

Segment based place recognition in 3d point clouds,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 5266–5272, 2017.

[70] H. Gao and S. Ji, “Graph u-nets,” in International Conference on Machine

Learning, pp. 2083–2092, 2019.

[71] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention, pp. 234–241, 2015.

[72] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,”

in Proceedings of the International Conference on Machine Learning, pp. 41–48,

2009.

[73] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu, “Auto-

mated curriculum learning for neural networks,” in International Conference on

Machine Learning, pp. 1311–1320, 2017.

[74] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for re-

inforcement learning agents,” in International Conference on Machine Learning,

pp. 1515–1528, 2018.

75

Vita

Fanfei Chen

Education

Ph.D. in Mechanical Engineering January 2016 - August 2021

Stevens Institute of Technology, Hoboken, NJ

M.E. in Mechanical Engineering August 2014 - December 2015

Stevens Institute of Technology, Hoboken, NJ

B.E. in Automobile Engineering September 2010 - June 2014

Tongji Zhejiang College, Zhejiang, China

Publications

F. Chen, P. Szenher, Y. Huang, J. Wang, T. Shan, J. Wang, S. Bai, and B.

Englot, “ Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration

Under Uncertainty,” International Conference on Robotics and Automation (ICRA),

June 2021.

S. Bai, T. Shan, F. Chen, L. Liu, and B. Englot, “Information-Driven Path

Planning,” Current Robotics Reports, vol. 2, pp. 177-188, April 2021.

T. Shan, J. Wang, F. Chen, P. Szenher, and B. Englot, “Simulation-based

Lidar Super-resolution for Ground Vehicles,” Robotics and Autonomous Systems, vol.

134, Article 103647, December 2020.

F. Chen, J. D. Martin, Y. Huang, J. Wang and B. Englot, “Autonomous

Exploration Under Uncertainty via Deep Reinforcement Learning on Graphs,” Pro-

76

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), October 2020.

F. Chen, J. Wang, T. Shan, and B. Englot, “Autonomous Exploration Under

Uncertainty via Graph Convolutional Networks,” Proceedings of the 19th Interna-

tional Symposium on Robotics Research (ISRR), October 2019.

F. Chen, S. Bai, T. Shan, and B. Englot, “Self-Learning Exploration and

Mapping for Mobile Robots via Deep Reinforcement Learning,” AIAA SciTech Fo-

rum, pp. 0396, January 2019.

S. Bai, F. Chen, and B. Englot, “Toward Autonomous Mapping and Ex-

ploration for Mobile Robots through Deep Supervised Learning,” Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.

2379-2384, September 2017.

S. Bai, J. Wang, F. Chen, and B. Englot, “Information-Theoretic Exploration

with Bayesian Optimization,” Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 1816-1822, October 2016.

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Motivation and Problem Statement
	Overview and Contributions

	Background
	Simultaneous Localization and Mapping (SLAM)
	Graph-based SLAM
	Active SLAM

	Deep Reinforcement Learning
	Deep Learning
	Reinforcement Learning

	Autonomous Exploration
	Classical Exploration
	Learning-based Exploration

	Learning-based Exploration without Uncertainty
	Related Work
	Problem Definition
	Entropy and Mutual Information

	Deep Reinforcement Learning
	State Space and Action Space
	Reward Design
	Value Function
	Reinforcement Learning Framework
	Neural Networks
	Training Strategies: Bayesian

	Experiments and Results
	Experimental Setup
	Testing in a 2D environment
	3D exploration

	Conclusions

	Learning-based Exploration under Uncertainty
	Related Work
	Problem Formulation and Approach
	Simultaneous Localization and Mapping Framework
	Exploration Graph

	Supervised Learning
	Deep Reinforcement Learning
	Reward Function
	Exploration Training with RL

	Experiments and Results
	Experimental Setup
	Policy Training
	Computation Time
	Exploration Comparison
	Scalability

	Conclusions

	Zero-Shot Reinforcement Learning for Autonomous Exploration
	Problem Formulation
	Simultaneous Localization and Mapping Framework
	Exploration Graph for Real Environments

	Algorithms and System Architecture
	Graph Neural Networks
	Deep Reinforcement Learning
	Reward Function
	Computational Complexity

	Experiments and Results
	Experimental Setup
	Policy Training
	Simulated Exploration Comparison
	Real-world Exploration

	Learning Exploration from A Portfolio of Algorithms
	Reward Function
	Policy Training
	Exploration Performance

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Reinforcement Learning for Learning from a Portfolio of Algorithms
	SLAM Graph Optimization by Learning Methods

	Bibliography

